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We prove that spin chains weakly coupled to a large heat bath thermalize rapidly at any temperature for
finite-range, translation-invariant commuting Hamiltonians, reaching equilibrium in a time which scales
logarithmically with the system size. This generalizes to the quantum regime a seminal result of Holley and
Stroock from 1989 for classical spin chains and represents an exponential improvement over previous
bounds based on the nonclosure of the spectral gap. We discuss the implications in the context of
dissipative phase transitions and in the study of symmetry protected topological phases.
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Introduction.—Understanding how thermal noise affects
quantum systems is a major open problem in emerging
quantum technologies. A key question is, how long does it
take for a system to thermalize (i.e., to converge to its
thermal Gibbs state)? Or more specifically, what is the
dependency of the thermalization time, also known as
mixing or decoherence time, on the temperature and the
system size?
In particular, it is important to identify those scenarios in

which the mixing time scales only logarithmically with the
system size—such property is usually called rapid mixing.
From a negative point of view, in this regime quantum
properties that hold in the ground state but not in the
thermal state are suppressed too fast for them to be of any
reasonable use. On the positive side, thermal states with
such short mixing time can be constructed very efficiently
with a quantum device that simulates the effect of the
corresponding thermal bath. Let us note that constructing
thermal Gibbs states is one of the main expected applica-
tions of a quantum computer, both as an important self-
standing problem [1], and also as a stepping stone in
optimization problems, via simulated annealing type algo-
rithms [2–6]. On top of that, rapidly mixing systems have
very desirable properties, such as stability with respect to
extensive perturbations in the noise operator [7,8].
Despite the importance of the question, very few

mathematically rigorous results are known in this direction.
The reason is the lack of mathematical techniques to tackle
the problem. Indeed, the analogous results for classical
systems already required sophisticated mathematical tools,
in particular, the notion of log-Sobolev constant for the

noise infinitesimal generator, whereas estimates for the
spectral gap of the generator are not enough to guarantee
such rapid mixing. Starting with the pioneer work of
Glauber for the particular case of classical 1D Ising model
in 1963 [9], Holley and Stroock [10] (building upon a
previous result of Holley [11]) managed to prove the rapid
mixing property for all 1D classical models at any temper-
ature. This was done by showing that the log-Sobolev
constant decreases at most logarithmically with the system
size. Later, Zegarlinski [12] improved their result showing
that the log-Sobolev constant was indeed bounded.
In the quantum regime all results have focused on

systems with commuting interactions. Note that this does
not imply at all that the system is classical. Indeed, such
systems include all types of nonchiral topological phases of
matter. However, most known results deal only with the
spectral gap of the generator, which can only guarantee a
mixing time that grows polynomially (and not logarithmi-
cally) with the system size [13]. For instance, Alicki et al.
[14] proved that the spectral gap has a uniform bound
independent of the system size for the quantum ferromag-
netic 1D Ising model and for Kitaev’s toric code in 2D at all
temperatures. This result was extended later for all Abelian
[15] and non-Abelian [16] Kitaev’s quantum double
models in 2D, as well as for all 1D models with commuting
interactions [13].
In Ref. [17], a log-Sobolev inequality was also intro-

duced in the quantum regime. In particular, a bounded (or
logarithmically growing) associated constant is known to
imply rapid mixing [18,19]. Since then, several works have
appeared trying to estimate such a constant for different
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noise models in many body quantum systems with com-
muting interactions [18–21]. Despite considerable effort,
the state of the art is that estimates have been obtained
either for rather artificial noise operators [22,23] or only for
sufficiently high temperature [21].
In this Letter, we prove that at any temperature, 1D

quantum systems with commuting interactions are rapidly
mixing. That is, they thermalize in a time that scales only
logarithmically with the system size. Our approach is to
bound the log-Sobolev constant of the associated Davies
generator, which is the standard choice for the action of a
thermal bath in the weak coupling limit.
This result yields interesting consequences in the context

of phase transitions. It is well known that the phases of a
given system in thermal equilibrium can be classified
according to its physical properties. Moreover, changes
of the system allow for the transformation of one phase to
another, sometimes abruptly, which results in the appear-
ance of a phase transition. Such phase transitions can also
occur in systems that are away from their thermal equi-
librium. In this case, due to dissipation, the environment
drives the system to the aforementioned equilibrium, which
is represented by a state and depends on the system and the
environment parameters. As such parameters change, the
properties of the system might also change suddenly,
yielding a so-called dissipative phase transition [24–28],
sometimes also referred to as noise-driven quantum phase
transitions [29] or simply quantum phase transitions driven
by dissipation [30].
In many cases, such dissipative phase transitions are

associated with an abrupt change in the scaling of the
thermalization time [28,29,31,32]. Indeed, if the transition
is driven by temperature, one expects a slowdown in the
convergence to the thermal Gibbs state as one crosses the
critical temperature from above, in line with the well-
known behavior of the classical 2D Ising model, where the
mixing time scaling grows from logarithmic to exponential
when crossing the critical temperature [33,34]. Our main
result shows that this type of slowdown never happens for
1D quantum systems with commuting interactions, since
they all rapidly mix at any temperature.
The result also has implications in the context of

symmetry protected topological (SPT) phases [35–37].
There has been a quite intensive study of SPT phases in
open quantum systems [38–48] and there is yet no con-
sensus on what is the fate of SPT in the presence of
temperature (see, e.g., [40,43] for negative results and
[42,49] for positive ones). The 1D cluster state [50]—
which plays a key role in the paradigm of measurement
based quantum computation [51,52]—has a commuting
Hamiltonian and it is a nontrivial SPT phase under a
Z2 × Z2 symmetry [53]. Hence, our result applies to it and
gives the first example of a nontrivial interacting SPT phase
with a provable decoherence time growing only logarithmi-
cally with the system size for thermal noise at every

nonzero temperature, where in addition all relevant inter-
actions in the problem can be asked to preserve the
symmetry, at least in a weak sense. The result has the
extra benefit of being stable to extensive perturbations, a
general property of quasilocal dissipative evolutions with
logarithmic decoherence time [7].
Our result does not apply, however, in the presence of a

strong symmetry [54,55], a key condition identified in [47]
to preserve SPT in open quantum systems, which empha-
sizes even more the totally different behavior between weak
and strong symmetries in the context of SPT phases in
nonzero temperature regimes.
The proof of our main result has two main steps. One

step works in arbitrary dimension and gives a way to
upgrade a bound on the spectral gap of the Davies generator
to a bound of the log-Sobolev constant for commuting
Hamiltonians. The proof requires among other things the
theory of operator spaces, that has been already proven very
useful in answering different questions within quantum
information theory [56]. The other step is to show that 1D
systems fulfill the hypothesis for such an upgrade to hold.
We expect the first step to be of independent interest, since

it opens the possibility to upgrade to the log-Sobolev regime
the recent result [16] showing that the Davies generator of
quantum double models in 2D have a bounded gap.
Mixing times for Davies maps.—We now briefly recall

the construction due to Davies [57], which under the
assumption of a weak-coupling limit with a thermal
bath at inverse temperature β, gives a description of the
evolution of the system as a Markovian master equation.
The joint Hamiltonian of the system and the environment
can be decomposed as H ¼ HS ⊗ 1E þ 1S ⊗ HE þ λHI ,
where HS is the Hamiltonian of the system, HE the one of
the bath, and HI is the coupling term between the two of
them, with the coupling constant λ ≥ 0. We can decompose
HI as HI ¼

P
α S

α ⊗ Bα, where Sα, Bα are Hermitian.
Renormalizing by the free evolution and sending λ → 0

while keeping τ ¼ λ2t constant, the reduced evolution of
the system is given by ρðτÞ ¼ expðτLÞ½ρð0Þ� [57]. Here, L
is a Lindbladian whose Lindblad operators, which we
denote by SαðωÞ, satisfy eitHSSαe−itHS ¼ P

ω S
αðωÞe−iωt,

where the sum is over the Bohr frequencies ω of the system
HamiltonianHS (for more details, we refer the reader to our
companion paper [58]).
Under the assumption that there are no operators

commuting with every Sα except the multiples of identity,
one can show [59] that the Gibbs state of HS at inverse
temperature β, namely, σβ ¼ Zβ

−1 expð−βHSÞ is the unique
fixed point of the evolution generated by L, and moreover

∀ ρ; expðtLÞðρÞ !t→∞
σβ: ð1Þ

An important problem concerns the speed at which the
convergence (1) occurs. This is quantified by the mixing
time of the dynamics: for ϵ > 0,
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tmixðϵÞ ≔ infft ≥ 0jketLðρÞ − σβk1 ≤ ϵg; ð2Þ

where kXk1 ≔ trjXj denotes the trace norm. One way of
controlling the mixing time is via the analysis of the spectral
gap ofL. It is well known [18] that, whenever the gap can be
lower bounded by a constant independent of system size
jΛj ¼ n, tmixðϵÞ ¼ Oð ffiffiffi

n
p Þ. This is the case for Davies

generators over spin chains with commuting interactions
at any positive temperature [13]. Moreover, Glauber dynam-
ics, which can be interpreted as the classical analogues of
Davies generators, are known to thermalize logarithmically
faster in 1D [10,12] with tmixðϵÞ ¼ OðpolylogðnÞÞ. This
property of a local (quantum)Markovian evolution is known
as rapid mixing.
One way to prove rapid mixing is to consider the

exponential decay of the relative entropy between the
evolved state at time t and the invariant state σβ:

DðetLðρÞkσβÞ ≤ e−4αtDðρkσβÞ: ð3Þ

The constant α appearing in (3) is known as the modified
logarithmic Sobolev constant (MLSI constant) of the
semigroup. By Pinsker’s inequality together with the bound
DðρkσβÞ ¼ OðlogðnÞÞ, one can easily show that α ¼
ΩðpolylogðnÞ−1Þ implies the rapid mixing property. This
is precisely what we achieve in this Letter.
Main result.—We now state the main result of our Letter,

namely, an exponential decay for the entropy in the form of
Eq. (3). We consider a finite chain Λ with n sites and the
Davies generator LΛ of a quantum Markov semigroup with
unique invariant state σ ≡ σβΛ ≔ ðe−βHΛ=tr½e−βHΛ �Þ, the
Gibbs state of a finite-range, translation-invariant, commut-
ing Hamiltonian at inverse temperature β < ∞.
Theorem 1.—In the setting introduced above, there

exists αΛ ¼ Ω(ðln jΛjÞ−1) such that, for all ρ ∈ DðHΛÞ
and all t ≥ 0,

DðetLΛðρÞkσÞ ≤ e−αΛtDðρkσÞ: ð4Þ

A sketch of the proof of Theorem 1 is shown in Figure 1.
The essential feature of the previous result is the scaling of
αΛ with jΛj, which we show to be logarithmic, thus
implying rapid mixing of the thermal evolution. To prove

this, our approach is based on the idea of reducing the
MLSI constant in Λ to the MLSI constants in smaller
regions Ai; Bi ⊂ Λ, in particular taken to be composed of
fixed-size (growing logarithmically with jΛj) separated
segments. By doing so, we reduce the expected scaling
of the inverse MLSI constant in Λ, which would be
OðpolyjΛjÞ, to that of the inverse MLSI constants in Ai
and Bi, which are actually Oðlog jΛjÞ.
As we will show in Supplemental Material [66], (4) is

equivalent to the following inequality:

αΛDðρkσÞ ≤ −tr½LΛðρÞðlog ρ − log σÞ�: ð5Þ

The right-hand side of (5) is called the entropy production
in Λ and denoted by EPΛðρÞ. Note that it is additive in
the region where the Lindbladian is considered, as LΛ ¼P

x∈Λ Lx. Therefore, for A ∪ B ¼ Λ with A ∩ B ¼ ∅, this
implies LΛ ¼ LA þ LB and thus EPΛðρÞ ¼ EPAðρÞ þ
EPBðρÞ. This is (I) in Figure 1. The left-hand side, however,
is much more subtle, as no such property is valid for the
relative entropy. We are able to prove, though, some form
of subadditivity for the relative entropy, in terms of some
so-called conditional relative entropies (in subregions of
Λ), up to a multiplicative factor which encodes how
correlations decay on the thermal equilibrium of the
evolution: This result is named quasifactorization of the
relative entropy and all the combined steps listed below are
represented as (II) in Figure 1.
Quasifactorization.—This part of the proof is sketched in

Fig. 2. We follow the next steps to reduce the global relative
entropy in Λ to on-site conditional relative entropies of
each site.
Step 1: We consider the relative entropy between an

arbitrary state ρ and the equilibrium state σ in Λ.
Steps 2 and 3: We reduce it to some conditional relative

entropies in smaller regions fAi; Big, in the spirit of the
results of [20–22], and a multiplicative error term depend-
ing on how correlations decay on σ between ð∪iAiÞc and
ð∪iBiÞc, which can be interpreted as a mixing condition
and is controlled using Araki’s estimates [60] as in the
recent [61].
Step 4: We use operator spaces to lift the results of [62]

to nontracial conditional expectations to further reduce the

FIG. 1. Sketch of the proof of Theorem 1, which can be summarized in this chain of inequalities, further explained in the main text.
The segments of spins placed above and below represent the regions where the numerator, resp. denominator, is acting. More
specifically, the full blue segment is for the whole Λ, whereas the cutted-red segment means that the term is defined as the sum of local
terms acting on each x ∈ Λ (and their boundaries), which are individually represented by highlighting x and fainting the color in the
other sites.
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conditional relative entropies on each smaller region Ai and
Bi to the sum of on-site conditional relative entropies.
Local control of the MLSI constant.—It is only left to

show that the latter on-site conditional relative entropies
can be bounded by the entropy production on each site, i.e.,
there is αx > 0 such that

αxD½ρkExðρÞ� ≤ EPxðρÞ; ð6Þ

for every ρ ∈ DðHΛÞ. This is obtained as a consequence of
the findings of [62] and represents (IV) in Figure 1. Note
that (III) follows from choosing a universal α0 for every
x ∈ Λ in (6).
More details for the proof of Theorem 1 are provided in

Appendix I. For a complete proof, we refer the reader to our
companion paper [58].
SPT phases.—In this section, we discuss how our result

applies to the understanding of the question whether
nontrivial SPT phases are robust against temperature. Let
us consider then an on-site symmetry ug for some group G
and a finite range frustration-free commuting system
Hamiltonian HS which also commutes with ug,

½HS; ug� ¼ 0 ∀ g ∈ G;

and belongs to a nontrivial SPTphase protected by theon-site
symmetry ug. The paradigmatic example is the 1D cluster
state, where the group G is Z2 × Z2. As a nontrivial SPT
system, when considered with open boundary conditions, it
has a degenerate ground space—the edge states—which is
protected by the symmetry against symmetric perturbations
ofHS, very much like the case of ordinary topological order
[63]. We review the cluster state example in Supplemental
Material [66]. and refer to [64] for a detailed introduction to
SPT order.

In this setup, one needs to ask for the Davies thermal-
ization process to also respect the symmetry G. We will do
this by requiring that the Davies generator is covariantwith
respect to the symmetry ug: for every state ρ and every
g ∈ G, it holds that

Lðu†gρugÞ ¼ u†gLðρÞug ∀ ρ; ∀ g ∈ G: ð7Þ

We remark that a sufficient condition for this to happen is
that the jump operators Sα commute with ug up to a phase:

Sαug ¼ ωα
gugSα; ωα

g ∈ Uð1Þ: ð8Þ

It is easy to construct many examples of covariant Davies
generators. In fact, this is always possible when the
symmetry ug is made of Pauli terms (tensor products of
Pauli matrices), by choosing Sα to be also Pauli operators.
This covers the case of the 1D cluster state.
We also remark that any such covariant generator L can

be obtained as the weak-coupling limit of the interaction
with a thermal bath that is weakly symmetric, in the sense
that there exists a representation Ug of G acting on the
Hilbert space of the environment such that, for each g ∈ G
and all α, ½HE;Ug� ¼ 0 and ½Sα ⊗ Bα; ug ⊗ Ug� ¼ 0. In
fact, if this is not the case, one can extend the original
environment by a conjugate copy of the system:

B̃α ¼ Bα ⊗ S̄α; Ug ¼ 1 ⊗ ūg;

obtaining a weakly symmetric thermal bath.
Our main result applied to the 1D cluster state implies the

following.
Corollary 1.—There exist nontrivial 1D SPT phases

which thermalize in logarithmic time in the system size for
every inverse temperature β < ∞, even when the thermal
bath is chosen to be weakly symmetric.

FIG. 2. Quasi-factorizations of the relative entropy used in the proof of Theorem 1: First, we consider in (a) the relative entropy
between the evolved state and the equilibrium in Λ and reduce it to some conditional relative entropies in smaller regions fAi; Big as in
(b), in the spirit of the results of [20–22], and a multiplicative error term in (c), depending on how correlations decay on σ between
ð∪i AiÞc and ð∪i BiÞc, which can be interpreted as a mixing condition and is controlled using Araki’s estimates [60] as in the recent [61].
In (d), we use operator spaces to lift the results of [62] to nontracial conditional expectations to further reduce the latter conditional
relative entropies to another form of on-site conditional relative entropies.
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Since in the thermal Gibbs state all the information
initially encoded in the ground space is washed out, this
implies that SPT protection is in general not robust against
temperature, at least in the weakly symmetric case.
Discussion.—In this Letter, we have shown that the

Davies dynamics associated with any 1D spin chain
translation-invariant commuting Hamiltonian at finite tem-
perature satisfies a log-Sobolev inequality, and therefore
the corresponding thermalization process converges loga-
rithmically fast in terms of the system size (the rapid
mixing property). This also holds under the assumption that
the evolution is weakly symmetric with respect to a given
symmetry, for example, in the case of SPT phases.
We expect our two-step proof strategy to be relevant in

higher dimensions. We leave the study of log-Sobolev
constants for Davies generators of 2D quantum double
models, whose gap was recently investigated in [16], to
future work.
Finally, one could ask whether our result for SPT phases

would apply to the setting where the thermal bath is chosen
to be strongly symmetric, in the sense that the representa-
tionUg acting on the Hilbert space of the environment is the
trivial one. This is not the case, given that this condition
prevents the thermal evolution from being ergodic, and in
particular for it to have a unique invariant state. This can be
seen by noticing that strong symmetry would imply that all
ug are invariant, in the sense that tr½ugLðρÞ� ¼ 0 for any ρ.
A sufficient condition for this to happen is that ½Sα; ug� ¼ 0

for each α and g ∈ G. In the presence of a full rank invariant
state, this condition is also necessary [65]. When ug is not
irreducible (which is the case for local on-site symmetries),
this implies that L has multiple invariant states and
therefore it is not ergodic. This issue was solved in [43]
by restricting the initial state only to the subspace of
ug-symmetric states, and studying the thermalization of the
symmetric Gibbs ensemble (a nonfull rank state). We leave
open the question of whether our techniques could be
adapted to cover this case.
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