
Coarse Graining DNA: Symmetry, Nonlocal Elasticity, and Persistence Length

Yair Augusto Gutiérrez Fosado ,1,* Fabio Landuzzi ,2,* and Takahiro Sakaue 3,†
1School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom

2Centro CMP3VdA, Istituto Italiano di Tecnologia, via Lavoratori Vittime del Col du Mont 28, 11100, Aosta, Italy
3Department of Physics and Mathematics, Aoyama Gakuin University,

5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan

(Received 3 June 2022; accepted 6 January 2023; published 3 February 2023)

While the behavior of double-stranded DNA at mesoscopic scales is fairly well understood, less is
known about its relation to the rich mechanical properties in the base-pair scale, which is crucial, for
instance, to understand DNA-protein interactions and the nucleosome diffusion mechanism. Here, by
employing the rigid base-pair model, we connect its microscopic parameters to the persistence length.
Combined with all-atom molecular dynamic simulations, our scheme identifies relevant couplings between
different degrees of freedom at each coarse-graining step. This allows us to clarify how the scale
dependence of the elastic moduli is determined in a systematic way encompassing the role of previously
unnoticed off-site couplings between deformations with different parity.
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The mechanical properties of DNA play a vital role in
fundamental biological processes [1–3]. Because of its
hierarchical structure, the behavior of DNA depends on the
length scales, and so does the model to describe it. At
mesoscopic length scales, DNA exhibits an entropic
elasticity, for which one can employ a generic flexible
polymer (FP) model [4]. On the scale of 50–100 nm, the
bending and twisting elastic degrees of freedom become
apparent, and DNA is described by the wormlike chain
(WLC) model [5,6]. However, understanding the mechani-
cal behavior of DNA at even shorter length scales, relevant
to, e.g., DNA-protein interactions, requires a more detailed
description that accounts for structural features of DNA and
sequence specificity. The standard model for that purpose is
the rigid base-pair (RBP) model, in which a DNA molecule
is described as a succession of rigid subunits representing
base pairs [7,8].
What is the relation between FP, WLC, and RBP

models? To answer this question, a suitable strategy is
to leave the sequence-specific effect aside and adopt an
average base-pair description. Recall that the mechanical
behavior of DNA at the mesoscopic scale probed by single-
molecule experiments is arguably one of the most success-
ful topics studied in biophysics to date [5,9–17]. In typical
experiments, the extension of a DNA molecule several tens
kbp long, was measured as a function of an applied force
and/or torque [5,9–13]. This provided a rigorous test to
existing theories based on FP and WLC and led to the
determination of the bending (lb) and torsional (lt) per-
sistence lengths [14–17]. More recently, however, experi-
ments have reported the high flexibility of short DNA
fragments characterized by a shorter effective lb, whose
origin and relation to the mesoscopic models have been

under active debate [18–22]. In this Letter, we address this
aspect by a combination of theory and all-atom simulations
of DNA (performed at ½NaCl� ¼ 150 mM; see details in
Ref. [23]) that help us to elucidate the relation between
models of DNA elasticity at different scales.
In principle, a large number of parameters in the RBP

model can be evaluated through the analysis of DNA
structural fluctuation obtained from all-atom simulations or
high-resolution crystal structural data. Past studies have
often adopted the local free energy assumption to simplify
the RBP model and attempted to relate its parameters to
persistence lengths [7,28–30]. However, such an assu-
mption is not generally correct [8,31,32], which implies
that the deformation of DNA is length-scale dependent.
Here, in order to elaborate on the nonlocal nature of the
RBP model, we present a systematic coarse-graining
scheme from RBP to FP through an intermediate model,
which we call the generalized wormlike chain (GWLC)
model (Fig. 1). This pinpoints the role of couplings
between different degrees of freedom at each coarse-
graining step. Our main results are (i) the formulas for
the persistence lengths in terms of the RBP model param-
eters in the long-wavelength limit, which are in good
agreement with known values, and (ii) a quantification of
the scale-dependent DNA elasticity, which is compatible
with the high flexibility of short DNA fragments [18–21].
Of crucial importance for our discussion is the symmetry
argument based on the molecular structure of the DNA
double helix [6]. This restricts the form of the free energy,
and, hence, it classifies the coupling terms as either
symmetric or antisymmetric. The latter, although largely
neglected in the literature, produces off-site correlations
between deformation degrees of freedom with opposite
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parity and affects the DNA flexibility on the scale of several
base pairs.
In the RBP model, DNA is described as a succession of

rigid subunits representing base pairs, which are numbered
by the index n ∈ ½−N=2; N=2Þ starting from one end of the
DNA chain, where N (assumed to be even) is the total
number of base-pair steps. The position rðnÞ of the nth base
pair and its orientation, described by an embedded ortho-
normal frame ½e1ðnÞ; e2ðnÞ; e3ðnÞ�, determine the DNA
configuration (Fig. 1). To describe the local deformation
of a DNA molecule, one identifies a vector ΩðnÞ ∈ R6

from the relative position and orientation between con-
secutive base pairs (n and nþ 1), such that it maps the
former to the latter [33,34]. The first three components
ΩrðnÞ≡ ½Ω1ðnÞ;Ω2ðnÞ;Ω3ðnÞ� represent the rotational
angles per unit length, commonly referred as tilt, roll,
and twist. Similarly, the last three components ΩtðnÞ≡
½Ω4ðnÞ;Ω5ðnÞ;Ω6ðnÞ� represent the translational dis-
placements per unit length, commonly referred as
shift, slide, and rise. The free energy takes the quadratic
form

E½fδΩðnÞg� ¼ a
2

X
n0

X
n

δΩTðn0ÞMðn0; nÞδΩðnÞ; ð1Þ

where sums run over all possible pairs of base-pair steps, a
(¼ 0.34 nm) is the average distance between consecutive
base pairs, and δΩðnÞ ¼ ΩðnÞ − hΩðnÞi represents the
deviation from the thermal average hΩðnÞi. The stiffness
matrixMðn;mÞ ∈ R6×6 is positive definite and encodes for
all the interactions (including electrostatics) between defor-
mations at base-pair steps n andm. Some remarks on theM
matrix are as follows.

(i) Reversal and translational invariance for average
sequence.—Since we are interested in the average base-pair
description, Eq. (1) can be rewritten as

E½fδΩðnÞg� ¼ a
2

X
n

X
m

δΩTðnþmÞMðmÞδΩðnÞ; ð2Þ

where M depends on the separation m ¼ jn0 − nj between
base pairs [31]. Introducing the Fourier transform as

δΩ̃ðqÞ ¼
XN=2−1

n¼−N=2

δΩðnÞe−2πiqn=N; ð3Þ

with the integer q ∈ −½N=2; N=2Þ, the energy function (2)
is represented as a sum over independent mode contribu-
tions:

E½fδΩ̃ðqÞg� ¼ a
2N

X
q

δΩ̃TðqÞM̃ðqÞδΩ̃ð−qÞ: ð4Þ

(ii) Local approximation is not valid.—From the equi-
partition theorem, we find

hδΩ̃ðqÞδΩ̃Tð−qÞi ¼ NkBT
a

M̃−1ðqÞ: ð5Þ

If one neglects correlations between deformations at differ-
ent base pairs, any component of hδΩ̃ðqÞδΩ̃Tð−qÞi just
exhibits a white power spectrum; hence, the stiffness matrix
takes a local form MðmÞ ¼ Moδm0, making Eq. (2) a
simple elastic free energy. However, our numerical simu-
lations (Fig. 2) show a colored power spectrum; hence,
distal correlations exist in the RBP model of DNA [31,32].
The characteristic bell-shape spectra can be fitted by a
Lorentzian, indicating an exponentially decaying memory
along DNA [23], which leads to the softer mechanical
behavior in short length scales. The slide degree of freedom
(M55) is against this trend exhibiting nonmonotonic q
dependence. Note also that among the translational degrees
of freedom the rise (M66) is very stiff, while the shift (M44)
and the slide are soft. We shall see below that these features
make the coupling of the rotational degrees of freedom with
the shift and the slide important to determine the mechani-
cal parameters in GWLC.
(iii) Conditions imposed by symmetry argument.—

Marko and Siggia predicted the coupling between bend
(roll) and twist based on the symmetry argument of the
DNA double helix [6], effects of which have been studied
in several contexts, including the structure of nucleosomal
DNA [35,36] and the torque response in experiments [17].
Here, we generalize this argument (see also Ref. [31]).
Under the reversal of contour coordinate n → n̂≡ −n, the
deformation vector is transformed as ΩiðnÞ → Ω̂iðn̂Þ ¼
ϵiΩiðnÞ, where ϵ1 ¼ ϵ4 ¼ −1 and ϵ2 ¼ ϵ3 ¼ ϵ5 ¼ ϵ6 ¼ 1;
i.e., tilt and shift are odd, and other deformations are even

(b)(a)

FIG. 1. (a) Coarse-graining scheme from RBP model to FP
model of DNA. RBP and GWLC models are characterized by the
wave number (q)-dependent stiffness matrix M̃ðqÞ ∈ C6×6 and
R̃ðqÞ ∈ C3×3, respectively. From the latter, q-dependent bend
and twist moduli are extracted. The q → 0 limit leads to the
persistence lengths characterizing the FP model. (b) Definition of
the orthonormal frame in the RBP model. Starting from the center
of the nth brick, e3ðnÞ points to that of the nþ 1th brick, and
e1ðnÞ lies in the nth brick and points to the major groove
direction, which then determine e2ðnÞ ¼ e3ðnÞ × e1ðnÞ.
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under the reversal operation [8,23,31]. Since the free
energy is invariant under this operation, MαβðmÞ ¼
ϵαϵβMαβð−mÞ ¼ ϵαϵβMβαðmÞ. In Fourier space, the com-
ponents of the stiffness matrix with the index pair of the
same parity (i.e., ϵαϵβ ¼ 1) are real M̃αβðqÞ ¼ jM̃αβðqÞj,
even functions of q and constitute the symmetric part of
M̃ðqÞ; i.e., M̃αβðqÞ ¼ M̃βαðqÞ ¼ M̃αβð−qÞ. On the other
hand, the components with the index pair of the different
parity (i.e., ϵαϵβ ¼ −1) are imaginary M̃αβðqÞ ¼ ijM̃αβðqÞj,
odd functions of q and constitute the antisymmetric part of
M̃ðqÞ; i.e., M̃αβðqÞ ¼ −M̃βαðqÞ ¼ −M̃αβð−qÞ. The last
condition implies the antisymmetric components vanish
in the q → 0 limit. The results from all-atom simulation
are all consistent with this symmetry argument; see
Fig. 2 [23].
(iv) Decomposition into rotational and translational

components.—In line with the decomposition of the defor-
mation vector ΩðnÞ ¼ ½ΩrðnÞ;ΩtðnÞ�, one can decompose
MðmÞ as

MðmÞ ¼
�

MrðmÞ MrtðmÞ
MtrðmÞ MtðmÞ

�
; ð6Þ

where the submatrices MrðmÞ;MtðmÞ ∈ R3×3 encode the
stiffness of the RBP model of DNA for the rotational
and translational deformations, respectively, and the sub-
matrices MrtðmÞ;MtrðmÞ ∈ R3×3 represent the rotational-
translational coupling with ½MtrðmÞ�αβ ¼ ϵαϵβ½MrtðmÞ�βα.
In the first step of the coarse graining, we integrate out

the translational degrees of freedom ΩtðnÞ. Exploiting the
Gaussian nature of the energy function (4), one finds the
energy function of the GWLC [31]:

Er½fδΩ̃rðqÞg� ¼
a
2N

X
q

δΩ̃T
r ðqÞR̃ðqÞδΩ̃rð−qÞ; ð7Þ

which depends only on the rotational degrees of freedom
ΩrðnÞ. The corresponding stiffness matrixRðmÞ ∈ R3×3 is
obtained from MðmÞ ∈ R6×6 as

R̃ðqÞ ¼ M̃rðqÞ − M̃rtðqÞM̃−1
t ðqÞM̃trðqÞ; ð8Þ

which is known as the Schur complement of M̃tðqÞ in
M̃ðqÞ [37].
For conciseness, we introduce the following expression

relating the components of two matrices:

R̃αβðqÞ ¼ ½M̃αβðqÞ�ð4;5;6Þ; α; β ∈ ð1; 2; 3Þ; ð9Þ

where we introduce the contraction operation

½Mαβ�ðδÞ ≡Mαβ −
MαδMδβ

Mδδ
ð10Þ

on the component of an arbitrary matrix Mαβ with the
integrated degrees of freedom indicated by the superscript
δð≠ α; βÞ. By applying the contraction operation sequen-
tially, one can readily define the double contraction

½Mαβ�ðδ;γÞ ¼ ½½Mαβ�ðδÞ�ðγÞ ¼ ½½Mαβ�ðγÞ�ðδÞ; ð11Þ

which embodies the effect of integrating two degrees of
freedom δ; γð≠ α; βÞ out simultaneously. The order of the
contraction is irrelevant, and the generalization to multiple
contractions integrating more than two degrees of freedom
is straightforward.
The same symmetry argument as for M applies to R

[23]. The antisymmetric components R̃12ðqÞ and R̃13ðqÞ are
purely imaginary and odd functions of q, while the rest are
symmetric and real, even functions of q; see Figs. 3 and S4
[23]. While the characteristic q dependence of R̃αβ is
similar to that of corresponding M̃rαβ, the magnitude is
reduced upon coarse graining. Indeed, our contraction

(a) (b) (c)

FIG. 2. Real part of M̃ðqÞ numerically evaluated using Eq. (5) represented in units of length. Lines are fit functions, where we assume
exponential correlations along DNA [23]. From left to right, plots show the components of M̃rðqÞ=kBT, a2M̃tðqÞ=kBT, and
aM̃rtðqÞ=kBT, which correspond to rotational, translational, and coupling submatrices, respectively (kBT is the thermal energy). Note
that some components ðM12;M13;M45;M46;M24;M34;M15;M16Þ have a negligible real part and instead exhibit characteristic
antisymmetric profiles in their imaginary part [23].
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formula (10) predicts the decrease in the effective rotational
stiffness, where the degree of reduction is controlled by
the stiffness of the integrated degrees of freedom and the
coupling strength with it. We observe that, while the
stiffness of the tilt and the twist decreases roughly by half,
that of the roll is rather insensitive. This is understood from
the negligibly weak roll-slide coupling (M̃25) compared to
tilt-shift (M̃14) and twist-slide (M̃35) couplings, whereas the
coupling with rise makes only a negligible contribution due
to its high stiffness (M̃66). Importantly, our result on the
R̃ðqÞ is in quantitative agreement with the recent report
based on the direct analysis of GWLC [31].
Next, we integrate out the twisting (or bending) degree of

freedomΩ3ðnÞ [orΩ1ðnÞ andΩ2ðnÞ]. The procedure of this
second step of coarse graining R̃ → Ã (or R̃ → C̃) is
essentially the same as that of the first step M̃ → R̃ [23].
The Gaussianity of the energy function (7) allows us to
construct

Eb½fδΩ̃bðqÞg� ¼
a
2N

X
q

δΩ̃T
bðqÞÃðqÞδΩ̃bð−qÞ; ð12Þ

which depends only on the bending degrees of freedom
ΩbðnÞ ¼ ½Ω1ðnÞ;Ω2ðnÞ�, where the bending stiffness
matrix AðmÞ ∈ R2×2 is antisymmetric with Fourier trans-
form displaying imaginary off-diagonal elements; i.e.,
Ã12ðqÞ ¼ −Ã12ð−qÞ ¼ −Ã21ðqÞ as obtained from the rota-
tional stiffness matrix RðmÞ ∈ R3×3:

ÃαβðqÞ ¼ ½R̃αβðqÞ�ð3Þ; α; β ∈ ð1; 2Þ: ð13Þ

Finally, one can disentangle tilt and roll as Ã1ðqÞ ¼
½Ã11ðqÞ�ð2Þ and Ã2ðqÞ ¼ ½Ã22ðqÞ�ð1Þ (see Fig. 4). Similarly,
one can construct the coarse-grained twist energy function

Et½fδΩ̃3ðqÞg� ¼
a
2N

X
q

δΩ̃T
3 ðqÞC̃ðqÞδΩ̃3ð−qÞ; ð14Þ

which depends only on the twisting degrees of freedom
Ω3ðnÞ with the stiffness C̃ðqÞ given by

C̃ðqÞ ¼ ½R̃33ðqÞ�ð1;2Þ: ð15Þ

In the long-wavelength limit (q → 0), all the antisym-
metric components in the stiffness matrix vanish [23].
Equations (13) and (15) then lead to

Ã1ð0Þ ¼ R̃11ð0Þ; Ã2ð0Þ ¼ R̃22ð0Þ −
R̃23ð0Þ2
R̃33ð0Þ

ð16Þ

and the twist modulus

C̃ð0Þ ¼ R̃33ð0Þ −
R̃23ð0Þ2
R̃22ð0Þ

: ð17Þ

These effective moduli evaluated at q → 0 govern the large-
scale bending and twisting behaviors of DNA, leading to
the persistence lengths

lb ¼
2

kBT
Ã1ð0ÞÃ2ð0Þ

½Ã1ð0Þ þ Ã2ð0Þ�
and lt ¼

2C̃ð0Þ
kBT

: ð18Þ

Equations (16)–(18) together with Eq. (9) provide a
quantitative connection between the RBP model and the
WLC and FP models of DNA (see Ref. [23] for the explicit

FIG. 3. Real part of R̃ðqÞ (GWLC model), obtained through
contraction operation [Eq. (8)] applied to M̃ðqÞ. Lines are fit
functions with exponential memory along DNA [23]. R̃12ðqÞ and
R̃13ðqÞ have a negligible real part and exhibit antisymmetric
characteristic profiles in their imaginary part [23].

(a)

(c)

(b)

(d)

FIG. 4. (a) Scale-dependent bend (tilt and roll) and twist moduli
Ã1ðqÞ, Ã2ðqÞ, and C̃ðqÞ as a function of the base-pair separation
m ¼ N=q. ÃðqÞ is the harmonic mean of tilt and roll. (b) Soft-
ening of the tilt Ã11ðqÞ − Ã1ðqÞ and the roll Ã22ðqÞ − Ã2ðqÞ at
finite q ≠ 0 due to the tilt-roll coupling. (c) Scatter plot of the off-
site correlation δΩ1ðnÞ and δΩ2ðnþmÞ with m ¼ 1. The
95% confidence ellipse is shown. The tile angle that the ellipse
makes with the x axis is θ and its eccentricity e. (d) θ as a function
of the off-site distance m.
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formula). From the RBP parameters M̃ð0Þ (Fig. 2), our for-
mula leads to Ã1ð0Þ=kBT ¼ 156 nm, Ã2ð0Þ=kBT ¼ 39 nm,
thus lb ¼ 62 nm, and C̃ð0Þ=kBT ¼ lt=2 ¼ 120 nm, both of
which agree with coarse-grained simulations [38], all-atom
simulations [31], and experiments [11,17]. Our construc-
tion reveals that, in addition to the softened roll and twist
due to their coupling [31,39] [see Eqs. (16) and (17)], a
similar softening mechanism is at work in the coarse-
graining step from the RBP to the GWLC model, where
the tilt-shift and twist-slide couplings play a decisive
role to determine the renormalized stiffness matrix R̃;
see Eq. (9).
Recent experiments have reported that short DNA frag-

ments exhibit much higher flexibility than expected from
its “bulk” elastic property measured in, e.g., single-mol-
ecule experiments [18–21]. In accord with it, the bend and
twist moduli as functions of the length scale m ¼ N=q
clearly show softer behavior on a small length scale
[Fig. 4(a)]. It is worth noting here that the antisymmetric
part of the stiffness matrix is generally nonvanishing at
finite q ≠ 0. Although smaller in magnitude than that of its
symmetric counterpart (Figs. S2, S4, and S5 [23]), its effect
is non-negligible for the quantitative account for the high
flexibility on a small scale. Therefore, one needs to take this
intrinsic property of double-stranded DNA into account on
top of the often invoked kinks [18–20] or local denaturation
bubbles [22] as a softening mechanism. As an example,
Fig. 4(b) shows the softening of the bending response
due to the antisymmetric tilt-roll coupling. This is mirrored
in the off-site correlation between the tilt and the roll
[Figs. 4(c) and 4(d)].
The nonlocal elasticity naturally arises upon coarse

graining, as demonstrated for a mechanical toy model with
internal degrees of freedom [32]. A simple (structureless)
polyelectrolyte shares this common feature, where the
electrostatic effect with counter ions and salts is renormal-
ized to the effective bending rigidity [40,41]. For DNA,
both the internal (double-helix) structure and the electro-
static effect contribute to the nonlocal elasticity. The fact
that the correlation length ξ in the stiffness matrices is on
the order of the Debye length (Tables S1–S4) indicates that
the electrostatic effect grows and dominates in lower salt
conditions.
In conclusion, we have provided a quantitative connec-

tion between models of DNA in different spatial resolution,
from the base-pair to mesoscopic scales. We expect that the
scale-dependent mechanics of DNA is indispensable for the
quantitative understanding of DNA-protein interactions,
which often induce the tight bend and twist on the scale of
several base pairs. Such features are seen, for instance, in
nucleosomes, dictating its structural fluctuation and
dynamics [35]. Also relevant is the DNA response to the
intercalators and groove binders, the understanding of
which is important for better design of anticancer drugs

[42]. Further studies are awaited, which need to address the
sequence effect, too.
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