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We identify a mechanism for biological spatial pattern formation arising when the signals that mediate
interactions between individuals in a population have pulsed character. Our general population-signal
framework shows that while for a slow signal-dynamics limit no pattern formation is observed for any
values of the model parameters, for a fast limit, on the contrary, pattern formation can occur. Furthermore,
at these limits, our framework reduces, respectively, to reaction-diffusion and spatially nonlocal models,
thus bridging these approaches.
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Introduction.—One of the striking manifestations of
self-organization in complex systems is the emergence of
regular spatial patterns at scales much larger than the
ones associated with the individual components [1]. In
biological populations this phenomenon has been
observed in many contexts including semi-arid vegetation
[2–4], bird swarms [5,6], or bacteria colonies [7,8].
Besides being fascinating, pattern formation has been
shown to critically affect the stability and resilience of
ecosystems [9,10].
Behind the mechanisms responsible for self-organization

there is often an agent or substance working as a signal that
mediates the interactions. Signals have distinct emission
protocols, propagation dynamics, and occur in a wide range
of temporal and spatial scales [11]. For example, species
might use acoustic [12], visual [13], or chemical [14]
signals to attract, repel, harm, or support targeted individ-
uals. It is this exchange of signals and the details of its
dynamics that ultimately drive self-organization process
[15,16] and, consequently, control other key macroscopic
outcomes [9,17].
Despite the numerous studies analyzing how interactions

control pattern formation, the focus has been mostly on
continuous and smooth signal dynamics. This overlooks
interactions that are mediated by flashing pulsed signals.
Therefore, how this fine-scale dynamics scales-up affecting
pattern formation is poorly understood. Here we show that
a timescale transition from slow (smooth) to fast (pulsed)
signal dynamics creates a route to pattern formation
alternative to the most studied ones arising from Turing-
like mechanisms [18].
This finding is obtained by studying a general activator-

inhibitor (population-signal) model, where a population
interacts through the release of harmful signals. Our study
extends standard activator-inhibitor structure [19,20], by

explicitly describing the fine-scale dynamics associated
with the release and spreading of signals. This framework
recovers two distinct structures at the regimes of slow and
fast signal dynamics that can lead to qualitative changes in
spatial stability. For slow signal (with timescales similar to
those of the population), we recover a standard reaction-
diffusion system which, for a broad set of population and
signal dynamics, does not exhibit Turing instability for any
values of model parameters. For the same system dynam-
ics, but with sufficiently fast signals, the system can be
described by a single integrodifferential equation, where
the toxic effects are captured by a competitive nonlocal
spatial interaction. In this limit, spatial instability can occur
leading to pattern formation.
Since we explicitly derive the underlying interference

competition mechanism behind the nonlocal effective
description, these results address a long-standing short-
coming: that paradigmatic nonlocal models of competitive
type leading to spatial patterns have been usually proposed
phenomenologically with no systematic derivation
[4,21,22]. In the cases in which such derivation has been
provided, the resulting equation did not have the character-
istics needed for pattern-forming instabilities (see, for
example, Ref. [23]).
Model.—Our aim is to model an ensemble of simple

organisms in a one-dimensional spatial domain (we do not
expect this dimensional restriction to be essential for our
results). They move, reproduce, and release harmful signals
in the form of pulses. These pulses can have biochemical
origins, such as a toxic substance, but can also be physical,
in the form of electricity, heat, sound, and light, which can
compromise the targets’ survival, and lead to a competing
dynamics among the individuals [13,24,25]. We describe
this scenario at the population level by the following
general density-field description,
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τρ∂tρ ¼ Lðρ; ∂xρÞ − ϵρϕ; ð1Þ

τϕ∂tϕ ¼ Lðϕ; ∂xϕÞ þRρðx; tÞ; ð2Þ

where ρ and ϕ are the population density and signal
intensity, respectively. L and L give the population and
signal dynamics when uncoupled, including diffusion or
other transport processes; τρ and τϕ explicitly set the
timescales for the population and signal dynamics, respec-
tively; and ϵ is an exposition factor related to the population
sensitivity to the toxin, which is released according to Rρ.
We consider that signal releases occur in pulses that are

controlled by the population density in the following
manner: Their starting time-space locations fti; xig are
independent Poisson random events with a probability of
occurring within small intervals dx and dt given by
αρðx; tÞdxdt. The pulses have duration δ̄, negligible spatial
extent, and equal intensities I0:

Rρðx; tÞ ¼
X
i

I0Πδ̄ðt − tiÞδðx − xiÞ; ð3Þ

where Πδ̄ðtÞ is the indicator function of the time interval
½0; δ̄�. The expected interevent time, htiþ1 − tii, is given by
τR ¼ 1=ðNðtÞαÞ, where NðtÞ ¼ Rþ∞

−∞ ρðxÞdx is the total
population size. Equations (1)–(3) together establish the
model studied in this Letter, being constituted by a
continuous population model but with a pulsed spatiotem-
poral dynamics for the signal [26].
The characteristic timescales are, besides τρ and τϕ, the

duration of the pulses, δ̄, and the mean pulse interevent
time, τR. We will focus on cases in which pulse duration is
much shorter than release interevent time, which is itself
much shorter than population dispersal and other demo-
graphic processes, δ̄ ≪ τR ≪ τρ. This means that there is a
timescale separation between interaction events and their
consequences to population dynamics.
In the following, we investigate how the system spatial

stability changes as a function of the signal timescale, τϕ.
We obtain effective descriptions for the population-toxin
dynamics and the respective pattern forming conditions for
(a) the slow signal-dynamics limit, in which the toxin-field
relaxation is slow, being comparable to population dynam-
ics timescales τϕ=τρ ∼ 1, and thus δ̄; τR ≪ τϕ; and (b) fast
signal-dynamics limit, when signal response is the faster of
all the timescales, τϕ ≪ δ̄; τR; τρ (see Fig. 1).
Slow signal-dynamics limit.—When τϕ=τρ ∼ 1 the inter-

event release time is much shorter than population and
signal timescales, τR ≪ τϕ; τρ. Then, the toxin field ϕ in
Eq. (2) feels the average of the toxin release pulses, which
are many and occur too fast for ϕ to follow them.
Consequently, we can replaceRρ by its average over small
time windows Δt ≪ τϕ and small vicinities Δx:

hRρðx; tÞi≡ 1

ΔtΔx

Z
0

−Δt

Z Δx
2

−Δx
2

Rρðxþ x0; tþ t0Þdx0dt0: ð4Þ

Using Eq. (3), hRρðx;tÞi¼ðΔxΔtÞ−1PnR
i¼1 I0δ̄¼ I0δ̄nR=

ðΔxΔtÞ, where nR is the number of pulses that have
occurred during the considered space-time window.
Noting that pulses are independent events, nR for each
cell follows a Poisson distribution with mean αρðx; tÞΔxΔt.
IfΔt is chosen sufficiently large (but still much smaller than
τϕ) nR becomes large and its coefficient of variation (ratio
of standard deviation to mean) vanishes so that fluctuations
can be neglected. Thus nR ≈ αρðx; tÞΔxΔt. As a conse-
quence, in the slow signal limit, hRρðx; tÞi ≈ I0δ̄αρðx; tÞ.
The other terms in Eqs. (1)–(2) can also be coarse-grained
but, due to their slow response times, they remain constant
and unaffected by the procedure: hρi ≃ ρ, hϕi ≃ ϕ,
hϕρi ≃ ϕρ.
Fast signal-dynamics limit.—In this fast limit, τϕ=τρ → 0,

the signal dynamics is much faster than any other process.
Then, we can expect the signal field to be always in constant
equilibriumwith the release events: it immediately reaches a
fixed stationary profile, GðxÞ during the pulse duration,
0 < t − ti < δ̄, and dissipates immediately when release
ceases (we assume a L dynamics that leads to signal
dissipation in the absence of releases). In Fig. 1, we present
a schematic representation of the fast signal propagation,
highlightingwith a dashed rectangle the area inwhich signals
would be confined taking τϕ → 0. The profile G at inter-
mediate times (such as thevertical dotted line inFig. 1) can be
obtained by solving Eq. (2) under the limit τϕ → 0. For a
single pulse in (3) at x ¼ 0, LðG; ∂xGÞ þ I0δðxÞ ¼ 0. The
conditions τϕ ≪ δ̄ ≪ τR guarantee that pulses are nonover-
lapping, so that the solution of Eq. (2) can be built just adding
up the successive responses to the different pulses:
ϕðx; tÞ ≈P

i Gðx − xiÞΠδ̄ðt − tiÞ. We now perform, as in

FIG. 1. Schematic representation of the timescales of the signal
ϕðx; tÞ in the fast signal-dynamics limit (τϕ → 0). Signal re-
sponse to two signal release pulses is shown for moderately fast
signals. ϕ remains mainly localized in time within the pulse
duration δ̄ (dashed rectangle). The rising and decaying parts of
the signal are indicated by the two short segments close to the
label τϕ. The vertical dotted line indicates an intermediate time at
which signal intensity attains the steady G profile. In the plot, the
lapse between pulses is set to τR (the mean interevent time) and
the field ϕ spreads according to Eq. (7) [with ν ¼ 4 and μ ¼ 1 as
in Fig. 3(b)].
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Eq. (4), an average of Eq. (1) over small intervals Δx and
Δt ≪ τρ. Because of timescale separation, all terms remain
unaltered except the last one containing ϕ, which becomes
hρϕi ≈ ρhϕi. Calculation of this last average is performed in
detail in the Supplemental Material [27], with the final result
hϕi ≈ δ̄α½G � ρ�, where G � ρ≡ R

Gðx − x0Þρðx0; tÞdx0.
In summary, from model (1)–(3), the slow signal-

dynamics limit (δ̄ ≪ τR ≪ τϕ; τρ) leads to

τρ∂tρ ¼ Lðρ; ∂xρÞ − ϵρϕ;

τϕ∂tϕ ¼ Lðϕ; ∂xϕÞ þ R̄ρ; with R̄≡ αδ̄I0: ð5Þ

Fast signal dynamics (τϕ ≪ δ̄ ≪ τR ≪ τρ) gives

τρ∂tρ ¼ Lðρ; ∂xρÞ − ϵ̄ρ½G � ρ�; with ϵ̄≡ ϵδ̄α: ð6Þ

Regardless of the choice of Lðρ; ∂xρÞ and Lðϕ; ∂xϕÞ, the
fact that the two regimes lead to different coarse-grained
models suggests that their spatial stability also differs. In
fact, it can be shown that pattern formation does not occur
in the slow signal limit [Eq. (5)] for a large class of
operators (see Ref. [27] for precise conditions on L and L).
However, for this same class in the fast limit, it is well
known that Eq. (6) can lead to spatial patterns when the
signal profile G is sufficiently platykurtic [32,33].
A particular example.—We illustrate the above develop-

ments with the following dynamics:

Lðρ; ∂xρÞ ¼ ðDρ∂xx þ rÞρ;
Lðϕ; ∂xϕÞ ¼ Dϕ∂xðϕν−1

∂xϕÞ − ½γϕμ−1�ϕ; ð7Þ

whichmodels populations of organismsmoving Brownianly
with diffusion coefficient Dρ and reproducing with growth
rate r. This choice is a fundamental building block for more
complex population dynamics models [34]. For the signal
dynamics, Eq. (7) gives a generalized nonlinear diffusion-
decay process characterized by exponents ν; μ > 0. It allows
us to consider the case where diffusion and decay are
sensitive to signal intensity in a negative ðν; μ < 1Þ or
positive ðν; μ > 1Þ manner, unraveling important channels
through which environment structure (e.g., propagation in
porous media, leading to ν > 1, see Ref. [35]) and mediator
interspecific biochemical interactions [24,34,36–40] can
affect signal propagation dynamics.
Linear stability analysis and pattern formation.—The

pattern-forming stability conditions of model (1)–(3) with
the choice (7) can be obtained in the above studied
timescale limits. For slow signal dynamics [Eq. (5)] the
nontrivial homogeneous steady state is ρ0 ¼ γðr=ϵÞμ=R̄,
ϕ0 ¼ r=ϵ. Standard linear perturbation around this state
identifies that all perturbation growth rates are negative for
any value of parameters, implying the stability of the
homogeneous state. Hence, no pattern-forming instability
can arise.

For fast signal dynamics the model reduces to a single
nonlocal equation, Eq. (6), with integral kernel G. This is
the solution of LðG; ∂xGÞ þ I0δðxÞ ¼ 0, an equation that
can be solved exactly [28] for the particular choice (7)
discussed here (additional details are in [27]) giving

GðxÞ ¼ A½1 − ð1 − qÞjsxj� 1
1−q; A ¼

�
I0
2Dϕ

ffiffiffiffiffiffiffiffiffiffiffi
μþ ν

2κ

r � 2
μþν

;

ð8Þ
with q ¼ 1þ ðμ − νÞ=2, s2 ¼ 2κAμ−ν=ðμþ νÞ, and κ ¼
γ=Dϕ. If q < 1 the support of this solution is restricted
to jxj ≤ 1=ð1 − qÞ.
Figure 2(a) presents the different shapes of GðxÞ as ν

increases, while assuming linear decay (μ ¼ 1). The
homogeneous steady solution is ρ0 ¼ r=ðϵ̄ G̃ð0ÞÞ, where
G̃ðkÞ is the Fourier transform of G. Growth rates of periodic
perturbations of wave number k to the homogeneous state
are given by τρλðkÞ ¼ −Dρk2 − rG̃ðkÞ=G̃ð0Þ and are shown
in Fig. 2(b). Pattern formation requires that, for some k, G̃
assumes a sufficiently negative value, yielding λðkÞ > 0
[32]. For the present case, this occurs if toxin diffusion has
a stronger sensitivity to concentration when compared to
the decay process, ν > μþ 2. The marginal case, ν ¼ μþ
2 (ν ¼ 3with μ ¼ 1 in Fig. 2), corresponds to the triangular
kernel and the limit case ν → ∞ to the (most used) top hat
kernel, which is well known to lead to pattern formation
[21,41–43]. Thus, in contrast to the slow signal-dynamics
limit, pattern formation can occur under fast signal dynam-
ics, showing the importance of pulsed dynamics on the
macroscopic behavior of the system.
To support these analytical findings, we show in Fig. 3

direct numerical simulations (see Supplemental Material
for the numerical integration scheme [27]) of Eqs. (1)–(3)
and (7) (with μ ¼ 1, ν ¼ 4) for a slow (a) and a fast
(b) signal-dynamics regimes. This is done by keeping the
population timescale at τρ ¼ 1=r ¼ 1 for both plots, and
selecting the signal timescale corresponding to τϕ ¼
1 ∼ τρ, and τϕ=τρ ¼ 1=500 ≪ 1, respectively. In agreement
with the analytical results, for the slow signal dynamics
pattern formation does not occur for any of the parameter

FIG. 2. (a) Profile GðxÞ from Eq. (8) and several ν. (b) Corre-
sponding growth rates λðkÞ of perturbations to the homogeneous
solution, as a function of perturbation wave number k. Parameters
are Dρ ¼ 0.01, μ ¼ 1, ϵ̄ ¼ r ¼ 1, Dϕ ¼ γ ¼ 1, and I0 ¼ 102.
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values we have checked [Fig. 3(a)]. On the contrary, in the
fast limit patterns develop, since ν > μþ 2. Spatial pop-
ulation periodicity is seen to emerge at long times in
Fig. 3(b), and the spatial pattern remains stable afterwards
(see Ref. [27]). The wavelength of the final pattern can be
analytically estimated as 2π=k⋆ ≃ 16.5, where k⋆ is the
fastest growing mode in Fig. 2(b). This is roughly close to
the periodicity seen in Fig. 3(b) (see also Fig. S2 in
Supplemental Material [27]).
Final remarks and discussion.—Our framework allowed

us to see how different fine-scale signal dynamics impact at
a coarser scale. It recovers standard reaction-diffusion
[19,20] schemes in the slow-signal limit and integrodiffer-
ential schemes [32,44] in the fast-signal limit, working as a
bridge between the two mostly used formalisms to describe
interacting populations.
We crucially note that these two descriptions can lead to

different macroscopic outcomes. In this Letter, we focused
on showing that, for the same population and mediator
dynamics, a transition from slow to fast pulsed signals can
effectively lead to spatially extended interference competi-
tion in such a way that pattern formation occurs [21,23,32].
Our findings are of relevance in situations, from chem-

istry to ecology, in which interactions between the entities
are mediated by pulses that are short and fast compared
to reaction processes. More broadly, they stress crucial

channels through which environment and individual-level
behavior can control system spatial organization [45]. For
example, our approach can be extended to cases in which
signals regulate individual mobility [46,47], a mediation
that has already shown to be relevant for population
survival and spatial patterns [15,48]. Developmental pro-
grams can also explore these channels to engineer specific
morphologies [26,49]. Further extension aiming at concrete
problems should include realistic features such as state-
dependent signal emissions [50,51] accounting for indi-
viduals response to attacks, memory [16], persistence [15],
and multisignal mediation where signals establish a set of
distinct biochemical interactions [11].
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