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Biological cells can actively tune their intracellular architecture according to their overall shape. Here we
explore the rheological implication of such coupling in a minimal model of a dense cellular material where
each cell exerts an active mechanical stress along its axis of elongation. Increasing the active stress
amplitude leads to several transitions. An initially hexagonal crystal motif is first destabilized into a solid
with anisotropic cells whose shear modulus eventually vanishes at a first critical activity. Increasing activity
beyond this first critical value, we find a re-entrant transition to a regime with finite hexatic order and finite
shear modulus, in which cells arrange according to a rhombile pattern with periodically arranged rosette
structures. The shear modulus vanishes again at a third threshold beyond which spontaneous tissue flows
and topological defects of the nematic cell shape field arise. Flow and stress fields around the defects agree
with active nematic theory, with either contractile or extensile signs, as also observed in several epithelial
tissue experiments.
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Connecting the single-cell behavior to large-scale
mechanical properties of biological tissues is key to under-
stand development, regeneration, and disease [1]. Growing
experimental evidence supports the idea that biological
cells actively tune their intracellular architecture according
to their overall shape. For instance, actomyosin [2–5] and
microtubules (whether in Drosophila [6,7] or in plants
[5,8]) tend to align along the direction of cell shape
elongation. Such oriented fibers are known to generate
anisotropic stress [9]. For instance, during Drosophila
germ band extension, cells involved in rosette formation
exhibit actin polymerization at opposite corners [10], which
effectively creates an extensile active stress, Fig. 1(a).
Here, we explore the consequences of such cell-shape

feedback for the tissue-scale behavior. We study a minimal
model where a bulk cellular active stress σðactÞ is created by
filaments which in turn align with cell shape, represented
by a tensor Q [Figs. 1(b)–1(d)]. To lowest order,

σðactÞ ¼ −βQ; ð1Þ

which we incorporate in a computational model for dense
epithelial tissue. For β > 0 (β < 0), cells actively push
(pull) on their neighbors along their direction of elonga-
tion [11,12].
Relations like Eq. (1) have been considered in tissue

models before. For instance, in active hydrodynamic
theories, where both σðactÞ and Q are defined by averages
over several cells, Eq. (1) gives rise to a classical flow
instability [13–15]. In the absence of confining boundaries,
this instability occurs at arbitrarily small activities β > 0.
An active stress as in Eq. (1) has also been included in

cell-based phase field simulations [16]. In these simula-
tions, the transition to spontaneous flows occurs for a
critical value of β which (i) is finite and appears to be
independent of the system size, contrasting with active
hydrodynamic theory results, and (ii) scales linearly with a
cell surface tension. So far, while Ref. [16] provided an
intuitive conjecture, a precise understanding of both is
missing. Is a finite activity threshold a general property of
deformable cellular materials?
We address these questions by combining analytical

arguments and vertex model simulations. Vertex models
describe epithelial tissues as polygonal tilings [17–19].
Forces on the polygon vertices are defined by a mecha-
nical energy: E¼1=2

P
J½KAðAJ−A0Þ2þKPðPJ−P0Þ2�,

where the sum is over all cells J of the tissue, and AJ
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FIG. 1. (a) Experimental images of the basal side of Drosophila
epithelial cells during germ band extension with marked GFP-
Rac1 marking filament growth activity; sixfold vertex indicated
by a square. Scale bar: 5 μm. Experimental images provided by
Y. Toyama. (b) A model of increasingly strong filament growth
(magenta rods) for increasingly acute cell corners (black wedge).
(c) Our model where active stresses are defined by cell shape.
(d) Active forces in a cell (index J) of our vertex model,
mimicking the effect of growing filaments at wedgelike cell
corners.
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and PJ are cell area and perimeter, respectively. The
parameters A0 and P0 are the preferred cell area and
perimeter with the associated rigidities KA and KP,
respectively. A transition occurs at P0 ¼ P�

0, with the
tissue behaving as a yield stress solid for P0 < P�

0 and
as a fluid for P0 ≥ P�

0 [20,21]. The numerical value of P�
0 is

in the range 3.72 to 3.94, with a value that depends on the
disorder in the cellular packing [20–24] (Supplemental
Material [25], Sec. I). This solid-to-fluid transition can
additionally be driven by cell-based active polar forces [29–
31] by active tension fluctuations at cell-cell junctions [32],
or by a chemomechanical feedback loop between tension
and myosin activity along cell-cell junctions [33,34]. The
vertex model solid-to-fluid transition is also echoed in
experiments on biological tissues [35].
Here we introduce Eq. (1) in the vertex model frame-

work, and depending on the value of P0, we find different
kinds of transitions. For P0 < P�

0, we find four different
regimes upon increasing β (Fig. 3). For β < β1 the tissue is
solid with isotropic cells. For β1 < β < β2, cell shapes are
anisotropic. For β2 < β < β3, we find a regime with
rhombile cells, many-fold vertices, long-range crystalline
order, and finite shear modulus. Finally, at β3 < β, the
tissue turns into an active fluid and displays constant flows
that lack large-scale coherence. Conversely, for P0 ≥ P�

0,
we find that a solid regime with anisotropic cells for β ≤ 0
directly transitions to the active fluid regime for β > 0. We
demonstrate why a finite activity threshold β3 appears in the
solid regime, P0 < P�

0, in our cell-based model; to over-
come the yield stress in the solid phase, a finite β ¼ β3 is
required for active flows to appear, as in Ref. [16].
Meanwhile, active hydrodynamic theories as in [13,14]
describe tissues as fluids, which corresponds in our model
to P0 ≥ P�

0. In this case, active flows can appear without
threshold, i.e., β3 ¼ 0.
Method.—We implement Eq. (1) through the following

friction-based dynamics for the vertex positions ri

γ
dri
dt

¼ FðsvmÞ
i þ FðactÞ

i : ð2Þ

Here, γ is a friction coefficient, FðsvmÞ
i ¼ −∂E=∂ri are the

standard vertex model (svm) forces, and FðactÞ
i are the active

forces induced by the active anisotropic bulk stresses σðactÞ
defined for each cell according to Eq. (1). There are
different ways to translate the cellular bulk stresses σðactÞ

into the vertex forces FðactÞ
i [36–39]. Here we use the

approach proposed by Tlili et al. [36,37,39], which relies
on Cauchy’s stress definition. For the cell shape anisotropy
tensor QJ in Eq. (1), we use the symmetric, traceless tensor

QJ ¼
1

PJ

X
k

lktk ⊗ tk −
I
2
; ð3Þ

where PJ is the cell perimeter; the sum is over all sides k of
the cell J, and lk and tk denote length and unit tangent
vector of side k, respectively. The eigenvalues and principal
directions of QJ provide metrics for the cell shape and cell
orientation. We measure the cell shape anisotropy by
qJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðQ2

JÞ
p

∈ ½0; 1Þ, with qJ ¼ 0 for round cells and
qJ → 1 for increasingly elongated ones.
We initialize the system with cells arranged according to

either (i) a regular hexagonal pattern with small random
deviations in the vertex positions, or (ii) random Voronoi
tessellations (Supplemental Material [25], Sec. I). We solve
Eq. (2) using an Euler scheme, where we perform cell-
neighbor exchanges (T1 transitions) for cell-cell interfaces
shorter than a length threshold ΔT1 (Supplemental Material
[25], Sec. I).We use periodic boundary conditions with fixed
system size. We set KA ¼ 1, A0 ¼ 1, KP ¼ 0.02, γ ¼ 1,
P0 ¼ 1, ΔT1 ¼ 0.01, and N ¼ 103 cells if not otherwise
stated (Supplemental Material [25], Sec. I; Table S1).
Results.—Increasing β, we observe several rheological

and structural transitions [Figs. 2(a),2(b); movies S1–S3 in
[25] ]. In Fig. 3 we show the dependence of these
transitions on both β and P0; however, in the following,
we focus on the case P0 ¼ 1 (Fig. 2). For small β <
β1 ≈ 0.20 the vertex model tissue is solid [Fig. 2(e)] with
isotropic cell shapes [Fig. 2(c)], where the average cell
elongation is q ¼ 0 (q ≈ 0.16) when using a hexagonal
(Voronoi) initial state. When β increases beyond β1, cell
shapes become anisotropic, as indicated by an increase
in q [Fig. 2(c)]. This is accompanied by a decrease in the
hexatic order parameter ψ6 [Fig. 2(d)], defined as
ψ6 ¼ jPΨj=Nj, where Ψj ¼

P
k∈neighbors exp ði6θjkÞ=Nj

and θjk ¼ arg ðrk − rjÞ [40–42]. While in this regime the
shear modulus vanishes for the hexagonal initial state, the
tissue remains solid, as verified through the examination of
the yield stress [Fig. 2(e), Supplemental Material [25],
Sec. I]. The transition point β1 decreases with increasing P0

up until the critical point P�
0 (Fig. 3).

The cell shape transition at β ¼ β1 occurs because the β
term in Eq. (1) effectively corresponds to a negative shear
modulus. As a consequence, when β > β1, the total cellular
shear modulus decreases to zero, destabilizing the isotropic
cell shape. To see this, we start from the Batchelor stress of
a vertex model cell with perimeter P and area A [39,43–45],
whose anisotropic part σ̃ is (Supplemental Material [25],
Sec. I):

σ̃ ¼
�
KPPðP − P0Þ

A
− β

�
Q: ð4Þ

To obtain the global tissue shear modulus Gaff in an
analytical mean-field picture, we apply an affine pure shear
strain ϵ to an isotropic cell, which creates the cell shape
anisotropy q ¼ 3ϵ=2 to lowest order in ϵ (Supplemental
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Material [25], Sec. II). Comparing Eq. (4) to σ̃ ¼ 2Gaffϵ,
we obtain

Gaff ¼
3

8
½KPPðP − P0Þ − β�: ð5Þ

Here, we have used A ≈ A0 ¼ 1, which corresponds to the
limit of incompressible cells. Testing Eq. (5) numerically,
where we also include all nonaffinities, we find the same
result, except for a prefactor: Gnonaff ≈ 2Gaff=3. To deter-
mine the value of the perimeter P appearing in Eq. (5), we
use that in the isotropic solid regime P ¼ P�

0 ≈ 3.722 for a
hexagonal tissue [21,46]. Isotropic cell shape thus becomes
unstable for β > β1ðP0Þ with (Supplemental Material [25],
Sec. II):

β1ðP0Þ ¼ KPP�
0ðP�

0 − P0Þ: ð6Þ

This equation exactly predicts the stability of the regular
hexagonal crystal (white lines in Fig. 3). This mean-field
picture also explains how in the regime P0 < P�

0 cells
elongate for β > β1ðP0Þ. For an affinely sheared isotropic
cell, the perimeter increases quadratically with its shape
anisotropy as P ¼ P�

0ð1þ q2=3Þ (Supplemental Material
[25], Sec. II) [24]. Inserting this in Eq. (4) and combining it
with σ̃ ¼ ð∂E=∂ϵÞ=2A, we obtain an effective potential of

the cell depending on its shape anisotropy EeffðqÞ, which
reads to fourth order in q (Supplemental Material [25],
Sec. II):

EeffðqÞ ¼
1

3
½β1ðP0Þ − β�q2 þ 1

18
KPP�

0ð2P�
0 − P0Þq4: ð7Þ

The energy minimum for β < β1 is at qmin ¼ 0,
while for β > β1 the minimum is at qminðβÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðβ − β1Þ=KPP�

0ð2P�
0 − P0Þ

p
, which corresponds to a

pitchfork bifurcation. Indeed, this predicts well the
observed cell elongation in the regime close to β1 for
P < P�

0 [Fig. 2(c), Supplemental Material [25], Sec. II].
The behavior of cell-shape elongation q is different in the

regime P0 > P�
0, where we observe a discontinuous

increase in q and coordination number Z as soon as β
is increased above zero [Figs. 3(a), 3(b), Supplemental
Material [25], Sec. VI]. The discontinuity in q can be
understood by first looking at a system with β ¼ 0 and
given cell elongation q. In this case, for P0 > P�

0, the
system is floppy with vanishing energy EðqÞ ¼ 0 as long as
q < qcrit, where the critical q value is qcrit ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0 − P�

0

p
.

Beyond this value, cells and the vertex model tissue start to
attain a finite shear modulus [24]. As a consequence, as
soon as β is set to a positive value, for q < qcrit the energy

Zi = 4 Zi = 5 Zi = 6 Zi = 7 Zi = 8
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FIG. 2. (a),(b) Morphology of (a) a four-cell system and (b) a cell sheet at different activities β, with an initially hexagon (top) or
Voronoi pattern (bottom). In (b), we mark vertices with coordination number Zi > 3. (c) Cell elongation parameter q, and T1 transition
rate kT1 versus cell activity β, for an initially hexagonal (H) or Voronoi (V) pattern. The solid black line refers to an analytical
approximation of q. (d) Hexatic order parameter ψ6 and average vertex coordination number Z versus cell activity β. (e) Long-time shear
modulus Gxy and yield stress σyield versus cell activity β. Inset: red shaded area indicates the mean � standard deviation of the shear
modulus for the initially hexagonal pattern, estimated from n ¼ 5 simulations. Default parameter values with P0 ¼ 1.
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becomes EðqÞ ∼ −βq2, and so any state q < qcrit becomes
unstable. Thus, for small positive β, cell elongation will
make a jump from zero to a value close to qcrit.
ForP0 < P�

0, beyond β > β2 (with β2 ≈ 0.24 forP0 ¼ 1),
starts a regime marked by an increasing hexatic order ψ6

[Figs. 2(b)–2(d)]. For tissues initiated in the near hexagonal
pattern, this order appears to be even long-ranged
(Supplemental Material [25], Sec. I). We call this the
rhombile regime, because domains appear where cells attain
a rhombic shape, which arrange into a periodic arrangement
of sixfold vertices [Fig. 2(b)]. Correspondingly, the rhom-
bile regime is marked by the increase in the average vertex
coordination number Z [Fig. 2(d)].
The emergence of the rhombile pattern and manyfold

vertices can be understood from single- and four-cell

systems. Indeed, at a critical value of βð1Þ2 ≈ 0.27 for the

single-cell system (βð4Þ2 ≈ 0.25 for the four-cell system), the
two shortest edges of a hexagonal cell shrink to length zero,
resulting in the observed rhombic cell shapes [Fig. 2(a);
Movie S4–S5; Supplemental Material [25] Sec. II].
We find that the shear modulus in the rhombile regime is

finite and peaks when the rhombile domain extension is
maximal at around β� ≈ 0.3, which coincides with local
maxima in the hexatic order ψ6 and coordination number Z
[Fig. 2(d)]. We understand this by considering a single cell:
at β� ¼ 0.3, the cell reaches a regular diamond shape with
two π=3 and two 2π=3 angles. This shape (also called
calisson [47]) is the building block of the crystal rhombile
pattern (Supplemental Material [25], Fig. S11b). When β <
β� ¼ 0.3 (β > β� ¼ 0.3), acute angles above (below) π=3
form in the single cell, leading to frustration in the rhombile
domains, which can destabilize them.
However, despite a finite shear modulus, the rhombile

regime exhibits a finite steady-state T1 transition rate
[Fig. 2(c); Supplemental Material [25] Sec. III; Movie
S2]. This may appear paradoxical at first sight, since T1
transitions are expected to relax the applied stress [48],
leading to a long-time fluid material response. Yet such
argument may not hold for an active system at steady state,
as considered here. Further, we notice that these T1
transitions are generated at the interfaces, rather than in
the bulk, of the rhombile crystal domains (Movie S2 [25]).
The shear modulus eventually vanishes at β3 ≈ 0.37 for

P0 ¼ 1. We find that this value matches the one at which
the shear modulus of the perfect rhombile crystal vanishes
(Supplemental Material [25], Sec. III). This suggests that
the finite shear modulus of the rhombile regime is caused
by rhombile crystal domains.
For β > β3, the system flows continuously, where the

steady-state T1 transition rate increases with activity
[Figs. 2(c),3(d) and Movie S2 [25] ]. Such flow already
appears in a four-cell system for an intermediate activity
range (movie S6 [25]). This flowing regime exhibits
features of an active nematic material. For instance, coarse
graining of the cell orientation field reveals the presence of
�1=2 topological defects in the fluid regime ([25], Sec. V)
[49,50]. The stress and velocity patterns around �1=2
topological defects are qualitatively consistent with those
predicted in an incompressible material with extensile
nematic activity [15,16,51] [Fig. 3(f); [25], Sec. V). We
note, however, the presence of a backward flow at the tip of
þ1=2 defects [Fig. 3(f)] that is reminiscent of the negative
wake reported in driven yield-strain materials [52]. A
similar negative wake flow pattern is visible in experiments
on Madin-Darby canine kidney cell monolayers [36,53]
(see Supplemental Material [25], Sec. VIII).
Taken together, our results show that the existence of a

yield stress explains the onset of active flows beyond a
finite critical activity β3 > 0, while active continuum
models [13,14], predict active flows at any finite activity,
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FIG. 3. Diagrams depending on the target shape index P0

(intercellular tension) and cell bulk activity β, showing (a) average
cell elongation parameter q, (b) average vertex coordination
number Z, (c) shear modulus Gxy, and (d) T1 topological
transition rate kT1. Here, the solid white curves refer to the
theoretical prediction β1ðP0Þ, Eq. (6), for the transition between
the solid regime with isotropic cells and the solid regime with
anisotropic cells. (e) Overall phase diagram. (f) Average isotropic
stress (color map) and velocity (black streamlines) fields near
þ1=2 defects, with P0 ¼ 1 and β ¼ 0.5. Average over n ¼ 44368
defects. Scale bar ¼ 1 cell.
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i.e., β3 ¼ 0. In our vertex model, such a difference arises as
a function of P0. For P0 < P�

0, where the vertex model
behaves as yield stress solid, we showed that β acts as a
negative shear modulus, destabilizing the tissue beyond a
critical value that increases with the distance to P�

0. In
contrast, we observe that for the fluid vertex model regime,
P0 > P�

0, any positive β destabilizes the tissue, inducing a
sharp increase in flow [Fig. 3(d), Supplemental Material
[25], Sec. VI]. Comparing both cases, we conclude that
while any positive activity leads to flows in a fluid material,
a yield stress creates a finite activity threshold to flow. This
is likely the case in Ref. [16], because the employed phase
field model essentially describes a foam that, expectedly,
displays a yield stress.
In contrast to active hydrodynamic theory predictions

[13,15,51], the cell-based model by Ref. [16] and the model
we discussed so far do not exhibit spontaneous flows in the
contractile regime (β < 0). One could take this as an
indication that the observed transition to spontaneous flows
is qualitatively different from the known instability of
active hydrodynamic theory [13,15,51]. However, sponta-
neous flows can also exist in the contractile regime, β < 0.
To show this, we included in our model the tendency of
cells to attain a finite elongation qJ through an additional
energy term, Eel ¼

P
J KQ½q2J − q20�2=8, whereKQ ≥ 0 and

q0 refers to a preferred cell elongation parameter.
Using this model, we observe spontaneous tissue flows

in both the extensile (β > 0) and the contractile regime
(β < 0), with cells displaying rhombic shapes [Fig. 4(a),
Movie S7 [25] ] and both the stress field and the flow field
qualitatively agree with predictions of active hydrodynamic
theories [Figs. 4(b); Supplemental Material [25], Sec. VII]
as well as experiments [11,54–57].
Lastly, we tested how much our results depend on the

definition of the Q tensor used in Eq. (1) (Supplemental
Material [25], Sec. IV). We find that the transitions in cell
shape and rigidity are generic, but not the appearance of the
rhombile crystal domains. In addition, we also tested the
case of no perimeter elasticity (KP ¼ 0) but with a constant

cell-cell interfacial tension instead [32]; we find the same
results regarding the transition to flows and the onset of a
rhombile phase (Fig. S23 [25]).
Conclusion.—We studied how a feedback of cell shape

on the cellular active stress generation affects collective
tissue dynamics. We show that increasing such a feedback
eventually fluidifies the vertex model tissue, yet through a
series of intermediate steps displaying hexatic order,
enhanced finite shear modulus and spontaneous T1 tran-
sitions. We find that spontaneous flows can be thresholdless
also for cellular materials and are not limited to the
extensile regime.
Our prediction of rhombile domains could potentially

also explain why, during the Drosophila germ band
extension process [10], cells display rhombic shapes before
the onset of sixfold vertices, Fig. 1(a). These cell shape
changes are shown to be triggered by actin protrusions [10].
At early stages, these protrusions are located at opposite
ends of the cell, suggesting that the resulting set of forces
could be compatible with the one considered in our
extensile active stress model, Fig. 1.
Perspectives.—While in most instances active cellular

materials have been studied in the vertex model through the
introduction of traction forces against a resting substrate
[31,58], here we introduce activity through momentum-
conserving forces FðactÞ

i [39]. Implementing this kind of
activity within a Galilean invariant dissipation framework
[45] could be useful to describe tissue flows in conditions
of low environmental friction, e.g., free-standing tissues,
pre-implantation embryos, or intestinal organoids [59].
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