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Homophily, the tendency of humans to attract each other when sharing similar features, traits, or
opinions, has been identified as one of the main driving forces behind the formation of structured
societies. Here we ask to what extent homophily can explain the formation of social groups, particularly
their size distribution. We propose a spin-glass-inspired framework of self-assembly, where opinions
are represented as multidimensional spins that dynamically self-assemble into groups; individuals
within a group tend to share similar opinions (intragroup homophily), and opinions between individuals
belonging to different groups tend to be different (intergroup heterophily). We compute the associated
nontrivial phase diagram by solving a self-consistency equation for “magnetization” (combined
average opinion). Below a critical temperature, there exist two stable phases: one ordered with
nonzero magnetization and large clusters, the other disordered with zero magnetization and no
clusters. The system exhibits a first-order transition to the disordered phase. We analytically derive
the group-size distribution that successfully matches empirical group-size distributions from online
communities.
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Structure-forming systems form an important class of
complex systems [1]. They are ubiquitous in natural and
social systems, ranging from atoms forming molecules,
polymers, colloids, and micelles to people forming struc-
tured societies. The theory of self-assembly [2] describes the
emergence of higher-order structures from elementary com-
ponents. Applications include molecular self-assembly [3],
lipid bilayers and vesicles [4], microtubules and molecular
motors [5], Janus particles [6,7], other types of patchy
particles [8], and RNA self-assembly [9]. The thermody-
namics of self-assembled systems can be described suffi-
ciently well with the grand-canonical ensemble for large
systems. This is no longer true for small systems consisting
of dozens or hundreds of particles. Correct results are
obtained from the canonical ensemble with an appropriate
correction to the entropic functional that correctly accounts
for the statistics of structure formation [10].
Social group structures emerge from interactions

between individuals. While traditional approaches explore
social group formation under endogenous factors [11–13],
more recent works attempt to explain its structures as a
consequence of opinion formation [14–17]. Within this
framework, groups are considered as clusters of homo-
geneous agents whose opinions evolve under the joint
effects of structural balance, the tendency to resolve
tension in unbalanced triadic interactions [18], and
homophily, the preference of like-minded individuals
to cluster [19,20]. Both approaches can explain the

fragmentation of society into well-connected groups of
uniform opinions, sometimes referred to as echo chambers
[21–26]. Spin glass Hamiltonians have been used on static
social interaction networks to quantify the amount of social
stress of the entire society [26], or that of each individual
[27]. Social stress plays the role of energy and measures
opinion similarity between individuals. Spin glass models
were extensively studied on various network topologies,
including fully connected [28–31], Barabási-Albert
[32,33], small-world [34], more general [35], and coevolu-
tionary, dynamic networks [36–38]; see Ref. [39] for a
review. A similar idea of considering group formation as a
way to maximize payoff through local homophilic inter-
action has led Javarone and Marinazzo [40] to the obser-
vation of a transition between the “group” and the
“individual” phases upon varying the ratio between indi-
vidual payoff and group payoff.
Obviously, the formation of friendship groups from

individuals that randomly encounter each other cannot
be realistically described on static networks. The theory
of self-assembly offers an attractive alternative that could
explain the endogenous emergence of social groups. To
capture the interplay of opinion dynamics and group
formation, the assumption of a stochastic rule for establish-
ing social ties based on the similarity of opinions is
reasonable.
To realize such a model, we assume an attractive

interaction between individuals based on the proximity
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of their opinions [27]. Opinions are represented by
Ising-like spin vectors in G dimensions, each dimension
corresponding to one binary opinion on a specific topic; the
more aligned these vectors, the stronger the attractive force
and the more likely they will form a friendly social tie. The
main idea behind the model is that people tend to form
friendship groups with like-minded individuals. They can
also form hostile relations with individuals—typically from
other groups. Entertaining a friendship relation with an
individual with a drastically different opinion creates social
stress. To reduce it, one can either change opinions or move
to another group.
To overcome the main limitation of previous models—

the predefined social network topology—we assume that
individuals create the social network by dynamically
interacting with each other and forming social links
stochastically. We assume that every individual has a
typical (average) number of positive connections within
their group. At times, with a certain probability, people
meet individuals from other groups. Links between indi-
viduals that belong to different groups are typically
negative since they tend to have nonaligned opinion
vectors. We assume that the probability of establishing a
new (positive or negative) link between two individuals is
proportional to the number of links both individuals have.
The new link is positive if two individuals share more than
half of their opinions; the link is negative if the majority of
opinions are different. In the model, the social network
emerges dynamically; only the local quantities such as each
individual’s typical degree (the number of social inter-
actions) are needed as an input. The resulting equilibrium
group-size distribution can then be derived using the theory
of self-assembly [10]. The distribution depends on the
“temperature” T, which represents the willingness to
change one’s opinion or to change the group. We study
the phase structure (location of tipping points) of the model
and compute the group-size distribution that is compared to
real data. We confirm all analytical findings with straight-
forward Monte Carlo (MC) simulations. The core of the
model is a social stress function (Hamiltonian) that every
individual tries to minimize by changing either their
opinion or their group membership.
Self-assembly of spin glass.—Let us consider n individ-

uals with g binary opinions (spin vectors). We denote the
jth opinion of individual i by sji ∈ f−1; 1g. The spin vector
of the ith individual is si ¼ fs1i ;…; sgi g. We define the
homophily between two individuals as the normalized dot
product, si · sj ¼ ð1=gÞPg

l¼1 s
l
is

l
j. Individuals can form

clusters of any size, k ∈ f1;…; ng. We denote the number
of groups of size k by nðkÞ; these fulfill

P
n
k¼1 kn

ðkÞ ¼ n,
where ·ðkÞ denotes the dependence of a quantity on
a given group size k. A group of size k is given by
GðkÞ ¼ fi1;…; ikg. Following Ref. [27], we define the
group Hamiltonian as

Hðsi1 ;…; sikÞ ≔ −ϕ
J
2

X

ij∈GðkÞ
Aijsi · sj

þ ð1 − ϕÞ J
2

X

i∈GðkÞ;j∉GðkÞ
Aijsi · sj

− hðkÞ
X

i∈GðkÞ
si · w; ð1Þ

where J > 0 is the coupling constant, and Aij is the
(dynamical) adjacency matrix of the underlying interaction
network. The first term corresponds to homophilic intra-
group interactions. The second term captures the intergroup
interactions. The parameter ϕ weights the relative impor-
tance of intragroup and intergroup stress. The last term
corresponds to an external bias caused, e.g., by the mass
media, hðkÞ is the local external field that encodes the
strength of that bias, and w is a weight vector, measuring
sensitivity to that bias. We take w ¼ f1;…; 1g. As dis-
cussed in Ref. [27], forG ¼ 1 the model reduces to the spin
model of Mattis type [41] (also used in Refs. [42,43]). This
model has no frustration on effective spins τi ¼ ϵisi i ∈ G,
where ϵiϵj ¼ 1 for j ∈ G and ϵiϵj ¼ −1 if j ∉ G. Thus, the
effective Hamiltonian in terms of τi is the usual Ising
Hamiltonian with no negative interactions. This is, how-
ever, not possible for G > 1, and therefore we inevitably
end with frustrated interactions (at least for some opinions).
The relative number of clusters of size k is ℘ðkÞ ¼ nðkÞ=n.

The equilibrium group-size distribution can be expressed
as [10]

℘ðkÞ ¼ ΛkZðkÞ; ð2Þ

where ZðkÞ ¼ ðnk−1=k!ÞPsi1 ;…;sik
e−βHðsi1 ;…;sik Þ is the par-

tition function of a group with size k, β ¼ ð1=kBTÞ is the
inverse temperature (using kB ¼ 1), and Λ is the normali-
zation obtained from

P
n
k¼1 k℘

ðkÞ ¼ P
n
k¼1 kΛkZðkÞ ¼ 1,

which is a polynomial equation in Λ of order n. The
number of groups per individual is M ¼ P

n
k¼1 n

ðkÞ=n ¼
P

n
k¼1 ℘

ðkÞ and the average group size is C ¼
P

n
k¼1 kn

ðkÞ=
P

n
k¼1 n

ðkÞ ¼ 1=M. The average opinion vec-
tor of group Gk is defined as mðkÞ ¼ P

i∈GðkÞ hsii. The
average weighted opinionmðkÞ ¼ mðkÞ · w can be expressed
as mðkÞ ¼ −ð1=βÞð∂ logZðkÞ=∂hðkÞÞ; the total magnetiza-
tion divided by the number of individuals is therefore
m ¼ P

k ℘
ðkÞmðkÞ.

Simulated annealing.—To overcome the main limitation
of previous models, i.e., the full specification of the
adjacency interaction matrix, we follow the approach used
in statistical physics of spin systems called simulated
annealing or configuration model [32]. We approximate

Aij ≈ ðqðkÞi qðkÞj =2CðkÞÞ, if i and j ∈ GðkÞ. Here qðkÞi is the

intragroup degree of node i and CðkÞ is the total number
of intragroup links in a group of size k. Similarly,
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Aij ≈ ðqðk;lÞi qðl;kÞj =2Cðk;lÞÞ for i ∈ GðkÞ and j ∉ GðkÞ. Here

qðk;lÞi is the intergroup degree of node i to all other groups of
size l and Cðk;lÞ is the total number of interlinks between
groups of size k and l. The simulated annealing approach
can be understood as a dynamical friendship network
formation framework based on the individuals’ opinions
and their desired number of friendship links.
Mean-field approximation.—Assuming the validity

of a mean-field approach, the group Hamiltonian can
be approximated by HðkÞ

MFðsi1 ;…; sikÞ ¼
P

i∈GðkÞ si ·H
ðkÞ
i ,

where

HðkÞ
i ¼−

ϕJ
2
qðkÞi mðkÞ þ ð1−ϕÞJ

2

X

l

qðk;lÞi mðlÞ −hðkÞ: ð3Þ

We define HðkÞ
i ¼ HðkÞ

i · w. By calculating the mean-field
partition function and taking the derivative with respect to
the external field, we get that the average group opinion
mðkÞ can be expressed as

mðkÞ ¼
X

i∈GðkÞ
tanh½βHðkÞ

i ðmðlÞÞ�: ð4Þ

A detailed derivation is found in the Supplemental Material
(SM) [44]. Let us now consider that the intragroup and
intergroup degree distributions, qðkÞ and qðk;lÞ, are random
variables with distributions pðqðkÞÞ and pðqðkÞÞ, respec-
tively. Then we can formulate the set of self-consistency
equations,

mðkÞ ¼ k
X

qðkÞ;qðk;lÞ
pðqðkÞÞpðqðk;lÞÞ tanhðβHðkÞÞ; ð5Þ

where HðkÞ depends on qðkÞ, qðk;lÞ, and mðlÞ. Thus, we
obtain a system of n coupled equations for mðkÞ.
Self-consistency equation with no intergroup inter-

actions.—The set of self-consistency equations simplifies
dramatically for the case ϕ ¼ 1, where no intergroup
interactions exist. The equations decouple, and we obtain
one self-consistency equation for every mðkÞ. We first focus
on the simple case of the fully connected intergroup
network, where pðqðkÞÞ ¼ δðqðkÞ; k − 1Þ. In this case, the
numerical value of the average magnetization per person is
depicted in Fig. 1. We observe the first-order phase
transition between disordered phase and the coexistence
phase, where both disordered and ordered phase exists.
These phases are separated by the binodal temperature TB,
which describes the point when the system, originally in the
ordered phase, starts to disorder when increasing the
temperature. Note that the spinodal temperature TS tends
to zero. The spinodal temperature describes the point where
the particles spontaneously start forming large groups
when starting in the disordered phase and decreasing the

temperature. All individuals are free with random opinion
in the disordered phase. In the ordered phase, all individ-
uals form a single cluster with the same opinion. The
existence of the first-order transition between the ordered
and a group phase has been suggested in Ref. [40].
The average cluster size rapidly decreases near the

binodal temperature while the overall magnetization
remains relatively stable. However, at the critical temper-
ature, the magnetization is still significantly nonzero. At the
same time, the average cluster size decreases continuously
toward one. The dependence of the phase diagram on the
external field and minimum cluster size is shown in
SM [44].
Monte Carlo simulations.—We perform the Monte Carlo

simulations to confirm the phase diagram obtained from
solving the self-consistency equations for the magnetiza-
tion numerically. We use the standard Metropolis algorithm
for n ¼ 50 individuals and three opinions, G ¼ 3. Each
MC step consists of n spin updates (flips) of one spin
element chosen randomly, followed by randomly choosing
one individual and moving them from the current group to

Average cluster size (C)
0 10 20 30 40 50

FIG. 1. Total magnetization m as a function of the temperature
T for n ¼ 50, G ¼ 3, and J ¼ 1, without external field. The heat
map shows the average cluster size C as a function of m and T.
We observe the presence of a critical temperature TB above which
the self-consistency equations yield a single solution, m ¼ 0.
Below this temperature, we observe two stable solutions, a
coexistence of a disordered phase, characterized by the absence
of large clusters (average cluster size is 1), and an ordered phase
that is characterized by the existence of one large cluster with all
particles having the same opinion vector. By increasing the
temperature to the critical temperature, the cluster starts to
disintegrate rapidly while the magnetization remains relatively
stable.
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another group—or by creating a new group consisting of
only that individual. If the individual is already solitary, it
has to attach to one of the existing groups. The MC
temperature for opinion flips and group changes are the
same, i.e., both spin flips and group changes are accepted
with probability minf1; expð−βΔHtotÞg, where Htot ¼P

GðkÞ HðGðkÞÞ is the sum over all group Hamiltonians.
For each temperature, we perform 100 independent sim-
ulations with 5 × 104 MC steps. We repeat the simulation
for two initial conditions corresponding to the two equi-
librium phases: one in the ordered and one in the disordered
phase. For ordered initial condition, we observe that the
particles stay in one cluster below critical temperature
(Fig. 2 in red). For the initial condition in the disordered
phase, the magnetization clearly fluctuates around zero
(Fig. 2 in blue). For lower temperatures, the system can
get stuck in a local minimum, seen by the fact that
the magnetization fluctuates more and we observe a
“quantization” effect. Even for very low temperatures,
large groups are rare to form and, therefore, TS is close
to zero. In SM [44], we investigate the dependence of the

phase diagram on the minimum group size, external field,
and initial conditions.
Group-size distribution of Pardus network.—Finally, we

compute the emerging group-size distribution from the
presented approach and compare it with a real dataset of an
open-ended massive multiplayer online game called
Pardus [47]. Players in Pardus form friendships and enmity
relations based on economic (in the virtual world) and
social activities. We focus on only one type of social
interaction, the players’ communication. The dataset con-
sists of 1239 days, each day with about 1000–1600 active
players (players with at least one communication event
with another player). We adopt a picture where a commu-
nication event between players creates a link between them.
Each connected component in this communication network
corresponds to one group. Typically, we observe one giant
connected component with several hundreds of participants
and many small groups with sizes ranging from 2 to 50. A
typical communication network on one day is shown in the
SM [44]. The average group-size distribution is obtained by
averaging group-size distributions over all days. We com-
pare the so-obtained group-size distribution of the friend-
ship network with the theoretical prediction from the self-
assembly model in Fig. 3. The intragroup degree distribu-
tion, obtained from Ref. [14], can be well approximated

with a truncated geometric distribution, pðkÞ
a ðqðkÞÞ ¼

að1 − aÞqðkÞ−1=½1 − ð1 − aÞk�, where qðkÞ ∈ f1;…; k − 1g.
with a ¼ 0.6, as shown in SM. For clarity, we show the
frequency of observing a group of size k, fðkÞ ¼
nðkÞ=M ¼ n=M · ℘ðkÞ. By fitting the temperature, we obtain
the theoretical group-size distribution, which corresponds
to the real group-size distribution of the Pardus dataset.
Because of the varying number of players across days, we

FIG. 2. Magnetization as obtained from Monte Carlo simu-
lations for the same parameters as in Fig. 1. For each temperature,
100 independent runs with 5 × 104 steps were performed. We
started from two types of initial conditions—one in the ordered
phase, where all individuals are in one large group with identical
initial opinions (red), and from the disordered phase, where all
individuals form a separate group with a random initial opinion
(blue). For each temperature, the histogram of magnetization was
established. The darker the color, the larger the frequency; see
color bars. The black curve shows the theoretical magnetization
obtained from the self-consistency equations. For the ordered
phase, we observe the perfect agreement with the theory, and the
critical temperature corresponds with the predicted one. For the
disordered phase, we see that the average temperature also
corresponds to the predicted value, m ¼ 0. However, the fluc-
tuations are larger.

FIG. 3. Semi-logarithmic frequency distribution of group sizes
obtained from the Pardus dataset (blue, from Ref. [14]) and the
prediction of the self-assembly group-formation model (red). The
group-size distribution is shown for group sizes between 2 and
50. For large groups of more than 500 players, the probabilities of
observing a group with an exact particular size are very small.
Thus we aggregate the probabilities for observing a group larger
than 500 into one single bin. For both small and large groups, the
theoretical prediction fits the group-size distribution of Pardus
dataset well.
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fit the group-size distribution for small groups in the range
between 2 and 50 and aggregate the probability of
observing one large group of more than 500 (giant
component). Medium-size groups (51–499 players) do
not appear in the dataset. It is obvious that the theoretical
group-size distribution explains the empirical Pardus data
well. Interestingly, the Gini coefficient, which quantifies
statistical dispersion, for both the empirical distribution
(G ¼ 0.900) and the theoretical model (G ¼ 0.901), is
close to the transition point ofG ¼ 0.86 observed in several
studies on percolation cluster size distribution (see
Ref. [48] for a recent review).
Discussion.—The presented self-assembly model for

social group formation offers a new view on coevolving
dynamics of group and opinion formation. The framework
of spin glass self-assembly is purely based on local
information, i.e., local social stress and the number of
contacts (degrees) of individuals. Our main result is to show
the existence of a critical temperature (binodal temperature)
above which large groups disintegrate and that the opposite
process, i.e., spontaneous group formation by lowering the
temperature, is not possible when the external field is zero.
We confirm these theoretical predictions with Monte Carlo
simulations.
We are able to make a further testable prediction

concerning the emerging group sizes in the model society.
To compare with real data, we used the social network of
the Pardus computer game, for which we have exact
knowledge of group formation and sizes. Using the actual
degree distribution of the friendship networks as inferred
from the dataset as an input to our model, we are able to
compute a group-size distribution that corresponds almost
perfectly with the empirical group-size distribution in the
Pardus data. Compared with recent work [40], our study
was able to take into account aspects such as social network
topology, local homophily effects (not only the global
average opinion), and coevolution of opinions and the
friendship links. Therefore, as a result, we obtained a
complex phase diagram, including the previously observed
first-order transition between individual and group phases
and other phenomena, such as bifurcation of the average
cluster size, or dependence on the external field.
The model has a few limitations. The most important is

that higher-order motives, such as those known from
social balance, are not recovered correctly. In many social
networks, some of the higher-order motifs are over-
or underrepresented, compared to configuration model
approach. To get these statistics right, more advanced
approaches known from spin glasses, such as the
Bethe approach [49], belief propagation [50], the cavity
method [51], or other generalizations of the configuration
model, could be useful. A second limitation is a correlation
between different opinions and the fact that this correlation
can change over time. In reality, people define their belief
system where the opinions are correlated [52,53], and the

correlations can evolve in time. Finally, the presented
framework operates on a single network where links
between individuals influence all opinions of their friends
or enemies. For more realism, one would need to consider a
multilayer network that represents different environments
(family, work, leisure time, social networks, etc.) with links
of different types where each layer can influence only
certain types of opinions.
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