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Three-dimensional (3D) two-band Hopf insulators are a paradigmatic example of topological phases
beyond the topological classifications based on powerful methods like K theory and symmetry indicators.
Since this class of topological insulating phases was theoretically proposed in 2008, they have attracted
significant interest owing to their conceptual novelty, connection to knot theory, and many fascinating
physical properties. However, because their realization requires special forms of long-range spin-orbit
coupling, they have not been achieved in any 3D system yet. Here, we report the first experimental
realization of the long-sought-after Hopf insulator in a 3D circuit system. To implement the Hopf insulator,
we construct basic pseudospin modules and connection modules that can realize 2 × 2-matrix elements and
then design the circuit network according to a tight-binding Hopf insulator Hamiltonian constructed by the
Hopf map. By simulating the band structure of the designed circuit network and calculating the Hopf
invariant, we find that the circuit realizes a Hopf insulator with Hopf invariant equaling 4. Experimentally,
we measure the band structure of a printed circuit board and find the observed properties of the bulk bands
and topological surface states are in good agreement with the theoretical predictions, verifying the bulk-
boundary correspondence of the Hopf insulator. Our scheme brings the experimental study of Hopf
insulators to reality and opens the door to the implementation of more unexplored topological phases
beyond the known topological classifications.
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Introduction.—In 2008, the pioneering tenfold-way
classification based on nonspatial symmetries provided
the first systematic understanding of noninteracting topo-
logical phases of matter [1,2], and founded the basis for the
later discovery of a long list of symmetry-protected
topological phases based on powerful methods such as
symmetry indicators [3–8]. Despite its systematicity and
fundamental significance, the existence of topological
phases beyond the tenfold way classification was soon
noticed. Just in the same year, Moore, Ran, and Wen
theoretically showed that a class of 3D two-band magnetic
topological insulators [9], later dubbed Hopf insulators as
characterized by an integer-valued Hopf invariant [10,11],
exist outside the tenfold-way periodic table [1,2]. Besides
the prominent conceptual significance, the two-band Hopf
insulators have attracted considerable interest both in
theory and experiment due to their many fascinating
properties [12,13]. The bulk-boundary correspondence, a
central property of topological phases, is also unique in
Hopf insulators. The uniqueness is manifested through the
dependence of topological surface states (TSS) on the
surface’s orientation and the support of gapless surface
Dirac cones, even though the time-reversal symmetry is
broken. Besides enriching topological phases, the study of

Hopf insulators also substantially advances the under-
standing of 2D out-of-equilibrium topological phases.
The Hopf invariant is found to play an important role in
the topological characterization of quenched Chern insula-
tors [14,15], quenched Euler insulators [16,17], and
Floquet Chern insulators [18].
Although Hopf insulators have been proposed for more

than one decade and the great importance of their physical
realization is well appreciated [9,19,20], to date they have
only been simulated in a single-qubit quantum simulator
[21] and have not been implemented in any 3D system yet.
The main challenges for implementing Hopf insulators are
the demand of having exactly two bands and a peculiar
pattern of long-range spin-orbit coupling (SOC). These
requirements rule out the implementation in many quantum
material systems as well as many artificial systems.
In this Letter, we report the first bulk realization of the

long-sought-after Hopf insulators in a 3D circuit. Because
of the extremely high level of connection freedom, circuit
networks have been used to realize many novel states of
matter, such as 2D topological insulators [22,23], 3D
topological semimetals [24–26], and even 4D topological
phases [27–30]. To carry out the experiment, we use
basic building blocks, which in principle admit the
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implementation of any arbitrary two-band model,
Hermitian or non-Hermitian, to design a 3D periodic circuit
according to a Hopf insulator model constructed by the
Hopf map. By numerically simulating the band structure
and calculating the Hopf invariant Nh, we find a Hopf
insulator phase with Nh ¼ 4 exists in a sizable region of the
parameter space. By experimentally measuring the bulk
and boundary energy spectra of a printed circuit board
sample, we find the experimental results agree well with the
theoretical predictions and verify the defining bulk-boun-
dary correspondence of the Hopf insulator.
Model Hamiltonian.—We start with the theoretical

model for two-band Hopf insulators. It is known that
any two-band model can be expressed via the Pauli
matrices σ ¼ ðσ1; σ2; σ3Þ as

HðkÞ ¼ d0ðkÞσ0 þ dðkÞ · σ; ð1Þ

where σ0 is the 2 × 2 identity matrix and k ¼ ðkx; ky; kzÞ.
Focusing on band topology, all essential information is
encoded in the three-component d vector. The first term on
the right-hand side is irrelevant and can be neglected.
Moore, Ran, and Wen showed that theoretical models for
two-band Hopf insulators can be systematically constructed
when the d vector is descended from a complex spinor via
the Hopf map [9], i.e., dðkÞ ¼ zðkÞ†σzðkÞ, where zðkÞ ¼
½z1ðkÞ; z2ðkÞ�T , z1 ¼ η1ðkÞ þ iη2ðkÞ, z2 ¼ η3ðkÞ þ iη4ðkÞ,
with η1;2;3;4ðkÞ being real functions of momentum. The map
is characterized by the Hopf invariant defined as [9]

Nh ¼ −
1

4π2

Z
d3kϵμνρAμ∂ρAν; ð2Þ

where Aμ ¼ −ihuðkÞj∂μjuðkÞi with μ; ν; ρ ¼ fkx; ky; kzg
and jui being the negative-energy eigenfunction of HðkÞ
is the Berry connection. It is worth noting that Nh does not
have any gauge ambiguity even though the Berry con-
nection Aμ is gauge dependent. Such a property allows us to
numerically calculate the Hopf invariant through discreti-
zation of the Brillouin zone [31]. When Nh is nonzero, the
resulting dðkÞ · σ model realizes a two-band Hopf insulator.
There are infinite choices for η1;2;3;4ðkÞ to achieve a

nonzero Nh. For the convenience of experimental imple-
mentation, in this work we consider η1ðkÞ ¼ t1 sin kx,
η2ðkÞ¼ t2cosðkxþkyþkzÞ, η3ðkÞ ¼ t3 sin ky, and η4ðkÞ ¼
t4 sin kz. Accordingly, we find Nh ¼ 4 and

d1ðkÞ ¼ 2t1t3 sin kx sin ky þ 2t2t4 cos kd sin kz;

d2ðkÞ ¼ 2t1t4 sin kx sin kz − 2t2t3 cos kd sin ky;

d3ðkÞ ¼ t21sin
2kx þ t22cos

2kd − t23sin
2ky − t24sin

2kz: ð3Þ

Here, we have introduced kd ≡ kx þ ky þ kz to shorten the
notation. Apparently, all three components of the d vector
involve long-range hopping processes in real space. What

raises a particular challenge is that the hopping parameters
involving different length scales need to be comparable in
magnitude and satisfy a stringent phase pattern.
Hopf insulator circuit.—In this Letter, we overcome the

challenge and implement the Hopf insulator Hamiltonian
(3) in circuit networks as follows. We first create the
pseudospin space via the module depicted in Fig. 1(a),
where three identical inductors form a triangle with C3

rotational symmetry. Accordingly, the pseudospin space in
Eq. (3) is provided by the twofold degenerate eigenstates
characterized by the 2D representation of the C3 group.
Connecting pseudospin modules with connection modules,
in which the components form a braided network, allows
electrical signals to flip the pseudospin, resulting in a SOC-
like effect when signals are transmitted between the
pseudospin modules. Based on this idea, we design con-
nection modules to generate couplings of the form �ðiÞσn
(n ¼ 1, 2, 3) as shown in Figs. 1(b)–1(d) [32,33]. As the
parameters of the capacitors, inductors, and resistors are
positive real numbers, we incorporate the negative sign and
the imaginary unit i into the network structure of the
connection modules in order to obtain the hopping matrix

(a)

(b)

(c)

(d)

FIG. 1. (a) A connection module connects pseudospin modules
p1 and p2. The three ports on the connection module’s left (right)
side are connected to the three nodes of the left (right) pseudospin
module. (b)–(d) The list of designed connection modules
m�ðiÞσ1;2;3 that gives �ðiÞσ1;2;3 types of tunneling matrices
between the pseudospin space, where solid lines indicate capac-
itors, dashed lines indicate resistors. In each module, the red solid
and dashed lines indicate that their impedances are half those of
the black solid and dashed lines.
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with complex coefficients in Eq. (4) below. With these
modules, the challenging long-range SOC in Eq. (3) can be
achieved since components in electronic circuits can be
connected between nodes at arbitrary distances by wires,
which is in sharp contrast to condensed solid materials and
many artificial materials.
Performing Fourier transformation on Eq. (3), the real-

space tight-binding Hamiltonian reads

HTB ¼
X
l

X10
m¼0

ðc†lþδm;l
Ûmcl þ H:c:Þ; ð4Þ

where l indicate lattice sites, δm are hopping vectors, Ûm

are SOC operators as given in Table (I). The operators Ûm
can be implemented with the connection modules illus-
trated in Figs. 1(b)–1(d). For example, Û1 can be built by
the m−σ1 module and Û5 can be constructed by connecting
the m−σ3 and miσ3 modules in parallel. To reduce the
number of operational amplifiers used in the experiment,
we have exchanged the expressions for d1 and d3. This
operation does not change the band topology since it is
equivalent to a redefinition of the spin basis.
According to Eq. (4), we construct the 3D Hopf insulator

circuit network using pseudospin modules and connection
modules. The unit cell of the Hopf insulator circuit is
shown in Figs. 2(a)–2(c). It is worth noting that the resistors
in the modules m�iσ2 and m�σ3 induce energy loss, which
makes the Hamiltonian non-Hermitian. To address this
issue, we use the H module [Fig. 2(b)] to compensate for
the energy loss and restore the Hermiticity [33].
Kirchhoff’s equations for the Hopf insulator circuit can

be written as

½h1ðkÞ ⊕ Hcircuit
h ðkÞ�ṽ ¼ ω−2ð0 ⊕ I2Þṽ; ð5Þ

where ⊕ stands for a direct sum of the constant repre-
sentation space and the pseudospin space of the C3

symmetry group, ṽ ¼ U†v, v ¼ ðv1; v2; v3ÞT are the node
voltages in the unit cell, and U is defined in Supplemental
Material [33]. h1ðkÞ is the Hamiltonian in the constant
representation space. Hcircuit

h ðkÞ ¼ P
3
i¼0 fiðkÞσi is the

Hamiltonian in the pseudospin space, where

f0ðkÞ¼
L
3
½4C1þ2C2þ2C3þ2C4þ12ðC5þC6Þ�;

f1ðkÞ¼−
4L
3
ðC1sin2kxþC2cos2kd−C3sin2ky−C4sin2kzÞ;

f2ðkÞ¼−
4

ffiffiffi
3

p
L

3

�
−

1

R1ω
coskd sinkyþC5 sinkx sinkz

�
;

f3ðkÞ¼−
4

ffiffiffi
3

p
L

3

�
C6coskd sinkzþ

1

R2ω
sinkx sinky

�
; ð6Þ

and Rα (α ¼ 1, 2), Cβ (β ¼ 1 to 6), L are parameters of the
components in the circuit. By choosing appropriate param-
eters, one can separate the eigenfrequencies of Hcircuit

h ðkÞ
well from that of h1ðkÞ. Therefore, we focus on Hcircuit

h ðkÞ
and examine its topological properties below.
For simplicity of discussion, we set the inductance

L ¼ 2.7 μH, Rα ¼ R (α ¼ 1, 2), and Cβ ¼ C (β ¼ 1 to
6). The phase diagram of the frequency band gap as a
function of R and C is shown in Fig. 3(a), where the band
gaps are finite in the yellow and green regions and tend to
zero in the dark blue region as shown in Fig. 3(b). In the
gapped region, we find Nh ¼ 4 as expected, agreeing with
the considered Hopf map. In the regions with vanishingly
small gaps, the Hopf invariant does not converge as it is not
well defined in the presence of band degeneracy.
One defining characteristic of the Hopf insulator is

the unique correspondence between the number of

TABLE I. The hopping vectors δm and the corresponding SOC
operators Ûm for the Hopf insulator circuit. x̂, ŷ, and ẑ indicate the
unit lattice vectors in the x, y, and z directions, respectively.

m 0 1 2
δm 0 2x̂ 2ŷ
Ûm

1
2
ðt21 þ t22 − t23 − t24Þσ1 − 1

4
t21σ1

1
4
t23σ1

m 3 4 5
δm 2ẑ x̂ − ŷ x̂þ ŷ
Ûm

1
4
t24σ1

1
2
t1t3σ3

1
2
ðit2t4 − t1t3Þσ3

m 6 7 8
δm x̂ − ẑ x̂þ ẑ x̂þ 2ŷþ ẑ
Ûm

1
2
t1t4σ2 − 1

2
ðit2t3 þ t1t4Þσ2 ði=2Þt2t3σ2

m 9 10
δm x̂þ ŷþ 2ẑ 2x̂þ 2ŷþ 2ẑ
Ûm −ði=2Þt2t4σ3 1

4
t22σ1

(a) (b)

(c)

FIG. 2. (a) The unit cell of the Hopf insulator circuit. The
connection modules are used for 3D connections. The ports of the
connection modules marked with δm (m ¼ 1 to 10) indicate that
they are connected to the pseudospin module in cell l þ δm, while
unmarked ones indicate that they are connected to the pseudospin
module in cell l. (b) TheH module consists of voltage followers,
resistors, and adder-subtractor operational amplifiers. (c) Detailed
circuit diagram of the red ports in Fig. 2(a).
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topologically protected TSS and the Hopf invariant.
Measuring this bulk-surface correspondence can faithfully
identify the topological nature of the system. In Figs. 3(c)
and 3(d), we show the numerically calculated band struc-
tures for a 16-layer thickness slab structure terminated in
the x and z direction, respectively. There are four TSS on
the x-direction surface of the system in Fig. 3(c), where the
red (blue) color refers to TSS located on the x ¼ 1 (x ¼ 16)
layer, and the green color refers to bulk states. On the
z-direction termination, the TSS localized on z ¼ 1 and
z ¼ 16 layers are degenerate in frequency, as shown in
Fig. 3(d). Remarkably, on each z-direction surface, the
crossings of the surface frequency spectra labeled by
the same color at time-reversal invariant momenta reveal
the existence of surface Dirac cones even though the
Hamiltonian does not have time-reversal symmetry, as

already mentioned. Experimentally, these exotic surface
Dirac cones provide a unique signature to identify the Hopf
insulator.
In the following, we experimentally verify the topo-

logical nature of the Hopf insulator designed above.
According to the circuit diagram in Figs. 2(a)–2(c), we
prepare a printed circuit board with the number of unit cells
being 3 × 20 × 6 in the x, y, and z directions and set
periodic boundary conditions in the x and y directions and
open boundary conditions in the z direction. The circuit
structure of the unit cell and the H module are shown in
Figs. 4(a) and 4(b). A global view of the printed circuit
board is shown in Supplemental Material [33].
To extract the frequency spectrum of the circuit lattice,

we perform frequency-domain measurements to obtain
the voltage vectors vðr; fÞ ¼ ½v1ðr; fÞ; v2ðr; fÞ; v3ðr; fÞ�,
where r ¼ ðx; y; zÞ labels the unit cell, f is the frequency,
and the subscripts indicate the nodes in each unit cell. By
performing Fourier transformation in the x and y directions,
the voltage vðkk; z; fÞ can be obtained in the momentum
space, where kk ¼ ðkx; kyÞ. The frequency dispersions
shown in Figs. 4(c)–4(e) are obtained by plotting

(a)

(c)

(d)

(b)

FIG. 3. (a) The calculated band gap as a function of the
parameters of C and R. The color map represents the ratio of
the band gap to the total frequency bandwidth. (b) The frequency
spectrum of Hcircuit

h ðkÞ at points A, B, C, and D in the phase
diagram, where Γ ¼ ð0; 0; 0Þ, Y ¼ ð0; 1; 0Þ, M ¼ ð1; 1; 0Þ, R ¼
ð1; 1; 1Þ are the high symmetry points in the Brillouin zone in
units of π with the unit cell lattice parameters set to 1. The
parameters (R, C) are equal to (0.03 kΩ, 0.03 nF) at A point,
(0.2 kΩ, 0.56 nF) at B point, (1.2 kΩ, 1.2 nF) at C point, and
(2.3 kΩ, 1.8 nF) at D point. The inductance is fixed as L ¼
2.7 μH in all calculations. (c) The calculated frequency spectrum
along ky and kz directions of a 16-layer slab with x-direction
surfaces. The green color refers to bulk states. The red (blue)
color refers to states localized on the x ¼ 1 (x ¼ 16) layer.
(d) The frequency spectrum of a 16-layer slab with z-direction
surfaces. The TSS on the z ¼ 1 (red) and z ¼ 16 (blue) layers
degenerate and overlap in frequency. The parameters at point B
are used to calculate the TSS in Figs. 3(c) and 3(d).

(a) (b) (c)

(d) (e)

FIG. 4. (a) The unit cell of the printed circuit board (in the red
box) is fabricated according to Fig. 2(a). (b) The unit cell of the
printed circuit board of theHmodule (in the yellow box). (c), (d),
and (e) show the experimentally measured band structure along
the ky direction with the signal source connected to a cell at z ¼ 1

(bottom surface), z ¼ 3 (bulk), and z ¼ 6 (top surface), respec-
tively. The black color represents the experimental data, and the
colored dotted lines are the computed band structure of a slab
with six layers in the z direction, where red (blue) indicates the
wave functions localized on the z ¼ 1 (z ¼ 6) surface and green
indicates the bulk states.
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ρðkk; z; fÞ ¼ jvðkk; z; fÞj2, where the peaks of ρ indicate
the resonance frequency of the circuit system.
The frequency dispersions for the excitation signal

applied to the z ¼ 1 and z ¼ 6 layers are depicted in
Figs. 4(c) and 4(e), where the TSS appear in the band gap
and locate around the time-reversal invariant momenta,
which is in good agreement with the results calculated from
the model Hamiltonian (color dotted lines). The TSS
disappear for the excitation signal applied to the z ¼ 3
layer because the signal on the middle layer cannot excite
the TSS located on the surface layers, as shown in Fig. 4(d).
These experimental results confirm the predicted properties
of the TSS. In Figs. 4(c)–4(e), we have shifted the
experimental data upward by 2.9 × 104 Hz to compare
with the theoretical results. Details of the distribution of the
TSS in the z direction are provided in Supplemental
Material [33]. As a final remark, the TSS in the circuit
lattice can also be detected by other methods, like imped-
ance measurements [34,35].
Conclusions and discussions.—In this Letter, we present

a general scheme for the implementation of long-range
SOC in electric circuits, where the spatial dependence of
the SOC can be modulated with a high degree of freedom.
Using this property, we have successfully implemented the
long-sought-after Hopf insulator in the circuit and observed
the TSS enforced by bulk-boundary correspondence. Our
general scheme brings the experimental study of Hopf
insulators to reality and paves the way for exploring other
exotic topological phases associated with peculiar SOC.
With our established platforms, the experimental explora-
tion of links and knots with very rich topological structures
becomes accessible [36–38]. Moreover, the idea behind our
scheme can be applied to the future design of systems with
more but fixed bands to implement the novel topological
phases beyond the known topological classifications, such
as Hopf insulators in three-band systems [39] and models
constructed by higher-dimensional generalizations of the
Hopf map [40].
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