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New-generation transmission electron microscopes (TEMs) are equipped with detectors that approach
the shot-noise limit. Hence it is pertinent to ask: What are the quantum limits of electron scattering
experiments in the TEM? For example, for a given electron dose, what is the ultimate accuracy allowed by
quantum mechanics for the atomic structure of a material? We provide quantitative answers based on
quantum estimation theory. We also show that, for an arbitrary set of sample parameters, the quantum limit
is achievable under conditions of weak scattering, but not strong multiple scattering (this conclusion
extends to scattering of other types of radiation). Implications for structure determination of radiation-
sensitive materials are discussed.

DOI: 10.1103/PhysRevLett.130.056101

In his famous 1959 lecture, “There’s Plenty of Room at
the Bottom,” Richard Feynman put forward a challenge to
improve the then-current resolution of the electron micro-
scope “by 100 times” [1]. That challenge was effectively
met in subsequent decades by transmission electron micros-
copy (TEM) and scanning tunneling microscopy (STM).
Here we focus on TEM, which is capable of imaging the
atomic structure of materials beyond their surface layers.
Around the turn of the century, aberration-corrected electron
optics [2] pushed the spatial resolution of TEM into the
deep-sub-Ångström regime. Moreover, the last decade has
seen the realization of a new class of electron detectors
having dramatically improved speeds and sensitivities that
can approach the shot-noise limit [3]. This has completely
opened the door to “low-dose” electron imaging and
diffraction of radiation-sensitive materials, such as two-
dimensional materials, and soft and biological materials. In
fact, in the not-too-distant future, the precision of TEM
experiments will likely approach the fundamental limits
imposed by quantum mechanics. Hence, it is timely to
consider: What are the quantum limits of electron beam
techniques in the TEM? For example, what is the ultimate
accuracy attainable for the position of an atom in a material?
What determines this accuracy, and can it be achieved in
practice? The answers determine our ability to “know” the
atomic structure and other characteristics of materials, most
especially radiation-sensitive materials.
Here, we provide answers using quantum estimation

theory. In recent years, the range of applications of
quantum estimation theory has grown steadily (see
Refs. [4] for reviews). Here, we elucidate how the formal-
ism applies to electron scattering experiments in the TEM,
with an emphasis on the multiple scattering problem. We
derive the quantum limit of precision for materials atomic
structure determination in the TEM, which constitutes an

explicit quantitative limit for a given electron dose. We also
show that, for a simultaneous estimate of an arbitrary set of
sample parameters, the quantum limit can be achieved
under weak scattering conditions, but it cannot be achieved
when there is strong multiple scattering.
Quantum estimation in TEM.—Consider an electron

scattering experiment in a TEM, designed to measure,
simultaneously, a set of parameters of interest, whereby a
suitable electron-optical arrangement is used to pass a fixed
coherent beam of electrons through an electron-transparent
sample to generate an image, diffraction pattern, or holo-
gram, etc. The parameters, denoted λ1;…; λP, are assumed
real, but they require no Hermitian operator representation.
Pertinent examples are parameters characterizing a given
sample (our main focus) and/or parameters characterizing
the electron optics. The relevant quantum state is that of the
scattered electrons impinging on the detector, denoted jψi,
which is assumed to depend continuously on λ1;…; λP, and
have normalization hψ jψi ¼ 1. In this first Letter, we
restrict ourselves to elastic scattering, consistent with the
assumption of a pure state jψi.
It can be shown [5] that the variance of an (unbiased)

estimate of the μth parameter λμ, obtained from N repeated
quantum measurements, satisfies, in the limit of large N,
the following chain of inequalities:

Var½λμ� ≥ I−1μμ ≥ J−1μμ : ð1Þ

Here I is the well-known (classical) Fisher information
matrix (CFIM), and J is the quantum Fisher information
matrix (QFIM, defined below). Relation (1) involves
diagonal elements of the inverse matrices. The first inequal-
ity in (1) is the well-known Cramer-Rao inequality dictat-
ing the precision of any (unbiased) statistical estimator. The
CFIM I depends on the complete experimental setup,
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including the process used to detect jψi. By contrast, the
QFIM J is independent of the detection process or any
influence that comes “after” the parameters λ1;…; λP. J
dictates the ultimate precision compatible with quantum
mechanics, Var½λμ� ¼ J−1μμ , known as the quantum Cramer-
Rao bound (QCRB). Only an optimal simultaneous esti-
mate achieves the QCRB ∀ λ1;…; λP, which requires both
I ¼ J and an estimator that achieves the (classical) Cramer-
Rao bound.
For a pure state jψi, the μνth element of the QFIM is

Jμν ≡ 4NReh∂μψ jQ̂j∂νψi: ð2Þ

Here,N is interpreted as the number of beam electrons used
in the TEM experiment, giving rise to the shot-noise
(standard quantum) limit of precision. j∂μψi is the partial
derivative of jψi with respect to λμ. Q̂≡ 1 − jψihψ j
projects the component orthogonal to jψi.
Simultaneous estimation of sample parameters.—

We adopt a common forward-scattering formalism,
jψi ¼ Ûjψ0i, where Û is a unitary operator and jψ0i is
some initial state. We write Û ¼ Â Ŝ, where the unitary Ŝ
describes the scattering in the sample, and the unitary Â
describes the effect of the postsample electron optics.
To accommodate the full range of samples studied in

TEM, Ŝ must be capable of describing multiple scatte-
ring. For a sample of thickness t, Ŝ can be written as a
multiplicative integral

Ŝðt; 0Þ ¼ ½1 − iðT̂ þ V̂NS
ÞΔz� � � � ½1 − iðT̂ þ V̂1ÞΔz�; ð3aÞ

where T̂ is the “transverse kinetic energy” operator and V̂n
is the potential operator for the nth plane of the sample. The
impulse limit NS → ∞ and Δz → 0 as NSΔz ¼ t is
implied, in which case the V̂n’s form an operator V̂ðzÞ
depending continuously on depth z, analogous to a time-
dependent potential energy. V̂ðzÞ is diagonal in the 2D
(transverse) position space:

V̂ðzÞ ¼ 1

M

X

x

jxivðx; zÞhxj; ð3bÞ

where vðx; zÞ is the 3D electrostatic potential, andM is the
number of points in the 2D discretization [6]. T̂ is diagonal
in the 2D (transverse) Fourier space:

T̂ ¼
X

k

jkiζðkÞhkj; ð3cÞ

where ζðkÞ ¼ πλejkj2 is the paraxial phase shift per unit z,
which involves the electron wavelength λe.
From here onwards, we let λ1;…; λP be characteristic

parameters of the sample as they are the primary aim of
most TEM experiments. Such a choice is appropriate when

the other experimental parameters, such as those character-
izing the electron optics, are sufficiently well known, e.g.,
from auxiliary measurements, as is often done in practice.
Thus, Ŝ depends on λ1;…; λP [through V̂ðzÞ], but jψ0i and
Â do not. Hence

j∂μψi ¼ ÂŜμðt; 0Þjψ0i; ð4Þ

where Ŝμ ≡ ∂μŜ. Using (3a) and (4) in (2), we obtain

Jμν ¼ 4NRehψ0jŴμQ̂0Ŵνjψ0i; ð5aÞ

Ŵμ ≡ Ŝ†iŜμ is a Hermitian generator, and Q̂0 ≡ 1 −
jψ0ihψ0j [see Supplemental Material (SM) [7] for deriva-
tion]. An explicit form for Ŵμ is given by

Ŵμ ¼
Z

t

0

dz Ŝð0; zÞV̂μðzÞŜðz; 0Þ; ð5bÞ

where V̂μ ≡ ∂μV̂, and the symmetry Ŝ†ðz0; zÞ ¼ Ŝðz; z0Þ has
been used. The operator V̂μðzÞ has the form (3b) except that
vðx; zÞ is replaced by vμðx; zÞ≡ ∂μvðx; zÞ.
J given by Eqs. (5) determines the quantum limit of

sample parameter estimation in the TEM (for general
multiple scattering conditions). Because here J refers to
sample parameters only, it is independent of any post-
sample electron optics or detector. Hence this J applies to
any TEM modality, whether it be imaging, diffraction,
holography, or some other modality.
Table I lists a hierarchy of scattering approximations

common in the fields of TEM and coherent x-ray imaging
and diffraction, along with expressions for the correspond-
ing QFIM on sample parameters (see SM for derivations).
Table I is roughly in order of decreasing scattering strength
(and therefore decreasing generality), and it applies to
arbitrary sample parameters so as to accommodate a very
broad range of situations. The phase-object approximation
(POA) applies to thin samples in which the transverse
components of scattering paths are negligible (e.g., 2D
materials). The more stringent weak POA (WPOA) is often
used to describe scattering in biological samples in TEM.
The simplicity of the POA and WPOA enable some
important insights presented next. The remainder of
Table I will be discussed later.
Implications for atomic structure determination.—Here

we let the parameters be the lateral (2D) Cartesian
coordinates xμ of the atoms in the sample. We adopt the
POA (or WPOA) and assume normal plane wave illumi-
nation jψ0i ¼ jk0 ¼ 0i. Under these conditions, we can
obtain, for coordinates xμ and xν, which may refer to
different atoms or the same atom, the QFIM elements

Jμν ¼
4Nt2

a

Z
d2x vμðxÞvνðxÞ; ð6Þ
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where N=a is the “electron dose” (a is the area of the
transverse plane) (see SM for derivation). J−1 obtained
from (6) provides the QCRB of atomic structure determi-
nation in the TEM (for the stated conditions). Commonly,
vðxÞ is approximated by a sum of atomic potentials, and
vμðxÞ has the form of a dipole at the atom’s location
directed along xμ.
Before proceeding, we recall that the QCRB is valid

asymptotically, that is, for N large enough for the statistics
to become Gaussian. To obtain results outside the asymp-
totic regime, we make use of the quantum Ziv-Zakai bound
(QZZB) [8]. The QZZB applies to arbitrary N, and in the
asymptotic regime it essentially coincides with the QCRB
(their ratio being QZZB=QCRB ≈ 0.61). We use the QZZB
to gauge the onset of the asymptotic regime where the
QCRB applies (see SM for further details). (Though valid
for any N, the QZZB has drawbacks in that there is no
guarantee of attaining it [8], and it does not so readily
suggest routes to optimized experimental design, hence our
focus on the QCRB.)
As a simple, yet highly illustrative, example, Fig. 1

shows the quantum limit of precision (square root of
variance) in the lateral coordinate of single isolated atoms
as a function of electron dose. The plot shows the greater of
the QZZB and the QCRB (which in practice means the
QZZB at lower doses and the QCRB at higher doses).
Results are presented for a selection of atomic species and
for beam energies in the range 30–300 keV (representative
of modern TEMs). In Fig. 1, we observe a very strong
“threshold effect” where, for a given species and beam
energy, increasing the dose above a certain threshold sees
the statistics “suddenly” enter the asymptotic regime. In
this regime, the attainable precision is better than 0.1 Å for
all elements and beam energies, improving as 1=

ffiffiffiffiffiffiffiffiffi
N=a

p
.

Interestingly, for all elements, the precision at threshold
falls in a narrow range around 0.05 Å. For doses below
threshold, the QZZB indicates a rapid deterioration in the
achievable precision, with atomic-level precision quickly
becoming completely lost. For gold (strong scatterer) the
threshold is 15–100 e−=Å2, whereas for carbon (weak
scatterer) it is 500–2000 e−=Å2. Lower beam energies can
achieve better precision owing to the stronger interaction
(other factors being equal).

As carbon is representative of biological materials, and
such materials can often tolerate doses of only ≲10 e−=Å2

before noticeable damage [9], Fig. 1 confirms that achiev-
ing sub-Å precision from a single TEM exposure is an
utterly hopeless task. However, if the sample can be cloned
in vast numbers, then the dose can be distributed and the
damage limit can be overcome. Cryo-TEM imaging of
proteins is an excellent example of this strategy (though in
this case each protein’s orientation must still be deter-
mined). Other radiation-sensitive materials, such as cova-
lent organic frameworks, have comparable dose tolerances
[10], and similar remarks apply.
A diagonal element Jμμ in (6) typically directly

influences the QCRB for the atomic coordinate xμ (as in
Fig. 1). However, the off-diagonals referring to two differ-
ent atoms can also play an important role if those atoms
overlap significantly when viewed along the beam direc-
tion. Such off-diagonals lead to covariances which worsen

FIG. 1. Quantum limit of precision in the lateral coordinate of
single atoms, as a function of electron dose and beam energy.
Each solid line shows the QZZB at lower doses (nonasymptotic
regime) and the QCRB at higher doses (asymptotic regime). For
each atomic species, lower and upper solid lines bordering the
colored band correspond to 30 and 300 keV electron beams. In
the background, dashed straight lines show the QCRB in the
nonasymptotic regime.

TABLE I. Hierarchy of Scattering Approximations and Corresponding Quantum Fisher Information on Sample Parameters.

Name Ŝðt; 0Þ Jμν hψ0j½Ŵμ; Ŵν�jψ0i ¼ 0?
a

General multiple scattering Eqs. (3) Eqs. (5) No
Projection approximation (PA) exp½−itðT̂ þ V̂Þ� Eqs. (5), V̂ independent of z No
Phase-object approximation (POA) exp½−itV̂�, (T̂ ¼ 0) 4Nt2½hV̂μV̂νi − hV̂μihV̂νi� Yes
Pseudo-weak POA (PWPOA) e−itT̂ − i

R
t
0 dz e

−iðt−zÞT̂ V̂e−izT̂ 4Nt2½hV̂μsinc2ðtT̂=2ÞV̂νi − hV̂μihV̂νi� Yesb

Weak POA (WPOA) 1 − itV̂, (T̂ ¼ 0) 4Nt2½hV̂μV̂νi − hV̂μihV̂νi� Yes

aApplies to the case of arbitrary sample parameters λ1;…; λP and an initial state jψ0i not dependent on them.
bHolds when the initial state jψ0i free-propagates along z with uniform phase shift.
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the attainable precision of coordinate estimates. In cases
where atoms of the same species overlap completely to
form an “atomic column,” as often encountered when
crystalline materials are aligned at major zone axes, the
QFIM becomes singular, indicating a complete loss of
precision for the atomic coordinates involved. In such
cases, reparametrization of the QFIM is necessary, e.g.,
using column coordinates rather than atom coordinates. We
note that, for a homogenous column that is well separated
from any others, Fig. 1 readily applies after a simple scaling
by the number of atoms in the column (though keeping in
mind the limitations of the employed POA).
Further general remarks are possible if we consider the

rotational average of the QFIM in (6), that is, the QFIM
relevant to a sample whose 3D orientation in the TEM is
“random.” This situation is especially relevant to cryo-TEM
imaging of proteins and other biological structures. We find
that, for structures without too much symmetry, the off-
diagonal terms worsen the achievable precision typically by
only a few percent, that is, their effect is often negligible, so
that the QCRB for a 3D Cartesian coordinate of an atom is
essentially what it would be if the atom were isolated (apart
from a factor

ffiffiffiffiffiffiffiffi
3=2

p
coming from the 3D rotational

average) (further details in SM). Put simply, the rotational
average can be extremely effective in removing the off-
diagonals in (6).
Conditions for optimal estimation.—We assume that the

detection of jψi is described by a projection-valued
measure (PVM), where a possible outcome ξ occurs with
probability pðξÞ ¼ jhξjψij2. It can be shown [11] (and see
SM) that I ¼ J, thus achieving the second equality in (1), if
and only if

hψ0j½Ŵμ; Ŵν�jψ0i ¼ 0 ∀ μ and ν; ð7aÞ

Imfhψ jξihξjQ̂j∂μψig ¼ 0 ∀ ξ and μ: ð7bÞ

As discussed in [11], if (7a) is satisfied, then it is possible
to satisfy (7b) by constructing a PVM from the Pþ 1 states
fjψi; Q̂j∂1ψi;…; Q̂j∂Pψig. Implementing such a PVM
experimentally is challenging, and in general it requires
prior knowledge of the said states.
However, TEM phase-contrast imaging is a case where

the conditions (7) can be more readily realized. For TEM
imaging, the experimental setup includes the objective lens
postfield aberrations and a pixelated detector. The new-
generation pixelated electron detectors referred to in the
introduction constitute a reasonable approximation to a
PVM, where each measurement results in a scattered
electron registered by some pixel at position x with
probability pðxÞ ¼ jhxjψij2. If we adopt the WPOA
(Table I), then (7a) is satisfied (see SM), and for an
incident plane wave jψ0i ¼ jk0i, (7b) reduces to

Rehk0jÂ†jxihxjÂ½V̂μ − hV̂μi�jk0i ¼ 0; ð8Þ

which is satisfied for aberration phase shifts γðkþ k0Þ −
γðk0Þ ¼ ð1 − δk0Þ½π=2þ ϕðkÞ� (mod 2π), where ϕðkÞ is
any odd function of k (see SM). This is the famous Zernike
phase condition (ZPC) [12] (in generalized form). The ZPC
is remarkable in that no prior knowledge of the sample is
required. So far, no mention has been made of the actual
statistical estimator to be used. However, as is well known,
a model-based maximum-likelihood estimator (MLE) con-
stitutes an efficient and unbiased estimation in that it
achieves, asymptotically, the Cramer-Rao bound, that is,
the first equality in (1). Hence, within the stated approx-
imations and idealizations, the ZPC combined with MLE
achieves the quantum limit in the simultaneous estimate of
an arbitrary set of sample parameters (for parameters that
are consistent with the WPOA).
For strong multiple scattering conditions, we can show

that condition (7a) does not hold (see Table I and SM), that
is, no optimal simultaneous estimate is possible, that is,
while we can calculate the QCRB using (5), no measure-
ment scheme can actually achieve it. Nor does (7a) hold for
the projection approximation (PA) where V̂ is independent
of z. On the other hand, (7a) does hold for the POA
obtained by setting T̂ ¼ 0. The WPOA is a special case of
the POA, and so (7a) holds in that case too, consistent with
the previous paragraph. The pseudo-weak POA (PWPOA)
is a single-scattering approximation in which T̂ ≠ 0, and
(7a) holds for initial states that free-propagate along z with
uniform phase shift (see SM for further details).
Discussion.—The importance of the ZPC in the TEM is

well-established [12], and achieving it is nontrivial, with
several methods having been pursued, including balancing
of lens aberrations [13], and electrostatic- [14], matter-
[15], and photon-based [16] phase plates. However, it is
likely not widely appreciated that the ZPC coupled with
MLE can achieve the quantum limit of precision for an
arbitrary set of sample parameters under weak-scattering
conditions. While the weak-scattering regime is necessarily
limited, it does encompass several important classes of
materials, including many two-dimensional materials, and
soft and biological materials. Such materials are very often
radiation sensitive, and so the benefits of an optimized
measurement scheme are manifest. Under the less stringent
POA, no analogue of the ZPC, whereby optimality is
achieved via sample-independent phase shifts, exists. But
an optimal scheme for the POA is possible, and has been
reported for optical microscopy [17], although it requires
a priori knowledge of the coordinate space phase shifts for
the specific sample. In general, (7) can be viewed as a
guiding condition for optimized experimental design.
For general multiple scattering conditions, it is the lateral

motion of beam electrons in the sample, as described by the
operator T̂, which is ultimately responsible for the impos-
sibility of achieving the aforementioned quantum limit.
When the parameters are atomic coordinates, condition (7a)
tends to be violated for atoms that are not well-separated

PHYSICAL REVIEW LETTERS 130, 056101 (2023)

056101-4



laterally, such that the scattering from one atom influences
the scattering from the other. The news is not all bad,
however, since the achievable precision is likely to
approach the quantum limit within a factor of order
unity [11]. Alternatively, if we are willing to sacrifice
the precision of certain sample parameters for the sake of
others, or assume that certain ones are known and can be
omitted, such that (7a) is satisfied, then it again becomes
possible to achieve the quantum limit in the strong multiple
scattering regime. An extreme example is single parameter
estimation, where (7a) holds trivially and an optimal PVM
always exists (e.g., fjψi; Q̂j∂λψig). We also remind the
reader that Table I intentionally makes no assumptions
regarding the sample parameters, and hence an optimal
simultaneous estimation may be possible in special cases.
In the present Letter, we have necessarily made several

idealizations in order to demonstrate the quantum limits.
For example, the assumption of a PVM comprising a
complete set of states amounts to a detector with an ideal
point-spread function (PSF) which can fully track the
changes in scattering which would result from a variation
of the parameter values. These assumptions are approx-
imately fulfilled by new-generation pixelated electron
detectors, and continued advances should see them ful-
filled even more accurately in the coming decade.
Notwithstanding this, the assumption of an ideal PSF
can be dropped by employing the more general notion
of a positive-operator valued measure. Similarly, there are
other factors not explicitly considered here, such as the
partial temporal and spatial coherence of the electron beam,
electron-optical instabilities, and sample structural disor-
der, all of which can be incorporated by employing a
mixed, as opposed to pure, state description of the scatter-
ing. An in-depth analysis will form a forthcoming
publication.
We conclude by mentioning several other avenues of

quantum estimation in the TEM worthy of further study,
namely, sample parameters other than atomic coordinates,
electron-optical parameters, incorporation of a priori con-
straints to aid dose reduction [18], quantitative imaging in
scanning TEM (STEM) [19], optimized illumination for
estimation of a single parameter [20], and consideration of
inelastic electron scattering and electron energy-loss spec-
troscopy (EELS). It is hoped that the present Letter will
stimulate further analysis of these (and other) avenues, to
aid the design and optimization of existing and new
techniques based on electron scattering, and to push the
precision of electron beam analysis of materials ever closer
to the quantum limits [7].
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