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Shapes and shape evolution in the mass-130 region, including the Te, Xe, and Ba isotopes, have long
been a focus of discussion in nuclear physics. This mass region consists of complex many-body systems
that can behave in astonishingly simple and regular ways, as classified in the Casten symmetry triangle.
By applying the shell model Hamiltonian proposed recently, we carry out calculations using the Hartree-
Fock-Bogolyubov plus generator coordinate method, in the large model space containing the
ð1g9=2; 1g7=2; 2d5=2; 2d3=2; 3s1=2; 1h11=2; 2f7=2Þ orbits. Based on good reproduction of the experimentally
known energy levels, spectroscopic quadrupole moments, and E2 transition probabilities, we identify the
quasi-SU(3) couplings across the N ¼ 50 and 82 shell gaps, which play a role in driving shape evolution
and phase transition discussed in the extended Casten triangle. Specifically, we demonstrate that the quasi-
SU(3) coupling mechanism in the proton partner orbits (1g9=2, 2d5=2) tends to drive the system to be more γ
soft, and that in the neutron partner orbits (1h11=2, 2f7=2) are responsible for the oblate-to-prolate shape
phase transition. With an emphasis on discussing spectroscopic quadrupole moments, our Letter uncovers
hidden symmetries from the vast shell-model configurations and adds microscopical insights into the
empirical symmetry triangle.
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Shape evolution as a function of the number of protons
and neutrons is one of the current topics in nuclear physics.
Nuclei with the proton and/or neutron magic number have a
spherical shape. Nonspherical shapes begin to develop as
nuclei move away from the magic number(s). In the so-
called transitional region, which is generally referred to as a
developing region where nuclei have no established shape
(i.e., neither a sphere nor a well-deformed ellipsoid), rich
shape phenomena can emerge. A collection of nuclei with
distinct shapes and shape evolution are classified in the
Casten symmetry triangle [1], with the three dynamical
symmetries U(5), O(6), and SU(3) of the interacting boson
model [2] on the vertices. The O(6) limit describes the
nuclei of γ softness, corresponding to the picture in the
early Wilets-Jean model [3]. Adding SUð3Þ to the original
triangle, an extended triangle has been constructed by Jolie
et al. [4,5], and the O(6) limit is suggested to be a critical
point of the phase transition between the prolate and oblate
shapes, corresponding to SU(3) and SUð3Þ, respectively.
All the nuclei in the A-130 mass region may find a position
in the extended triangle. However, questions such as why
the SU(3) limit can be split into two and how the two, as the
proton and neutron numbers vary, evolve via the O(6)
critical point remain open for the microscopic explanation.
Microscopically, nuclear shapes are induced by corre-

lations in systems consisting of neutrons and protons.

The effective nucleon-nucleon (NN) interaction gives rise
to correlations through configuration mixing of the single-
particle orbits occupied by the nucleons. Shapes emerge
from the dynamics of many nucleon systems through self-
organization [6], exhibiting new collective phenomena that
are usually expected from strongly correlated quantum
systems [7]. It is important to uncover hidden symmetries
from the huge shell-model Hilbert space, which allows for
an extraction of the collective dynamics from microscopic
effective NN forces.
To uncover symmetries in the microscopic description of

shape evolution, the conventional one-major-shell model is
inappropriate. One obvious example is the strongly
deformed heavy nuclei such as 154Sm and 166Er. To describe
those nuclei, a much larger model space is essential [6].
Even for the lighter A-60 mass region, the extension of
model space is necessary to reproduce the rapid change in
collectivity from 64Fe to 66Fe [8]. The addition of the upper
2d5=2 orbit in the fpg model space is indispensable [9,10].
The joint contribution of 2d5=2 to the fpg model space

can be understood by the quasi-SU(3) coupling proposed
by Zuker et al. [11,12], in which the large E2 collectivity
for 64Cr and 64Fe near N ¼ 40 [13,14] is explained as
the interplay between the quadrupole force and the central
field in the subspace with the Δj ¼ 2 orbits. In these
examples [13,14], the physical backbone is the quadrupole
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correlation in the partner orbits ð1g9=2; 2d5=2Þ separated by
theN ¼ 50 shell gap. The idea of quasi-SU(3) coupling has
recently been applied [15] to interpret the sudden enhance-
ment of the BðE2; 2þ1 → 0þ1 Þ value within just a few
isotopes around N ¼ Z ¼ 40 [16]. Extending the idea,
the present authors proposed [17] that by moving one major
shell up, one can expect a similar coupling scheme across
the N ¼ 82 shell gap of the ð1h11=2; 2f7=2Þ type, again
satisfying Δj ¼ 2. We have shown [17] that the quasi-
SU(3) coupling scheme also plays an important role in the
sudden increase of quadrupole collectivity found around
N ¼ 70 in the Nd (Z ¼ 60) isotopes.
The present Letter discusses the Te, Xe, and Ba isotopes

having neutron numbers N ¼ 70–80, aimed at finding the
microscopic origin for shape evolution in the extended
Casten triangle. The nuclei to be studied have just a few
more protons above Z ¼ 50 and a few less neutrons below
N ¼ 82. Therefore, they are typical transitional nuclei
around the O(6) limit in the symmetry triangle. As we
shall demonstrate, while both quasi-SU(3) couplings, in
the partner orbits ð1g9=2; 2d5=2Þ and in the partner orbits
ð1h11=2; 2f7=2Þ, contribute to enhanced E2 collectivity, the
former is found to be the main driving force towards γ
softness, and the latter is responsible for changing the
deformed shapes from oblate to prolate.
To investigate the quasi-SU(3) coupling effect across the

Z ¼ 50 and N ¼ 82 shell gaps, one must include the 1g9=2
orbit below the Z ¼ 50 and the 2f7=2 orbit above the N ¼
82 shell gap in the major gdsh-shell model space. Such a
large model space, ð1g9=2; 1g7=2; 2d5=2; 2d3=2; 3s1=2; 1h11=2;
2f7=2Þ, called gdshf, cannot be handled by conventional
shell models. For example, the basis dimension for 128Xe
in the M scheme would reach 7.6 × 1022, far beyond the
current computational capability.
To overcome this difficulty, a promising tool is the

Hartree-Fock-Bogolyubov plus generator coordinate
method (HFBþ GCM) [18] with the code [19]. The
method of the angular-momentum-projected GCM with
quadrupole-constrained Hartree-Fock basis states was first
introduced into shell-model calculations in Refs. [20,21],
and its extension has been discussed recently in Ref. [22].
In this type of calculation, the number-projected HFB states
are used, in which the pairing correlation is treated
explicitly [18,23–25]. We have confirmed that for the
current mass region [15,18], the present HFBþ GCM
approach can provide us with the same quality in results
as the exact diagonalization method and the Monte Carlo
shell model (MCSM) [26,27].
We adopt the two-body Hamiltonian, called PMMU,

which has been proven to work well in a wide range of
nuclei [28,29]. It consists of four basic terms:

H ¼ H0 þ VP þ VQQ þ VMU
m ; ð1Þ

where H0 and VP are the single-particle Hamiltonian and
the (monopole and quadrupole) pairing interaction,

respectively. The VQQ term in Eq. (1) is the quadrupole-
quadrupole interaction, which, in this discussion, is respon-
sible for coupling the particular orbits with Δj ¼ 2 to
generate the quasi-SU(3) effect. In the present calculation,
we employ the same single-particle energies and force
strengths as in Ref. [17]. The last term in Eq. (1) is the
monopole interaction VMU

m constructed from the monopole-
based universal force [30], which contains a Gaussian
central force and a tensor force.
Nuclei of the mass-130 region have long been a focus

of discussion in nuclear physics. They have been studied
by many models—for example, the Bohr-Hamiltonian
approaches derived from the microscopic model [31–34],
the shell model [35–37], the SD-pair shell model [38], and
the GCM method with the Skyrme-type forces [39]. Some
nuclei have been identified as representatives of the sym-
metry limits in the Casten triangle [40–42]. There are also
intensive studies on how shapes evolve from spherical to γ
soft or triaxial along isotopic chains [43–47]. Nevertheless,
most conclusions are not robust due to the lack of discussion
on spectroscopic quadrupole moments (Qs). Recently,
Ref. [43] reported experimental data for 130Xe with energy
levels and BðE2Þ as well as Qs values. They found that
several theoretical approaches [35,37,48] and the early
phenomenological models [3,49] fail to reproduce the data
in Ref. [43]. Very recently, energy levels, BðE2Þ, andQs for
126;128Xe have been observed [50]. We perform the HFBþ
GCM calculations with the PMMU interaction and find that
our shell model can correctly describe the data in Ref. [50].
The most relevant physical observables are the spectro-

scopic quadrupole moment QsðIÞ and the electric quadru-
pole transition probability BðE2; I → I − 2Þ. Although
both are related to matrix elements of the quadrupole
operator, they carry different physical information. In
particular, the diagonal matrix elements determine QsðIÞ
with a sign, which are measurable quantities [51] and direct
indicators for nuclear shapes. In Fig. 1, our calculated Qs
and BðE2; 2þ1 → 0þ1 Þ values (denoted by red lines) are
compared with experimental data in the upper and lower
graphs, respectively, where the effective charges are taken
as ep ¼ 1.0e and en ¼ 0.4e. Overall, the calculation
reproduces the available experimental data. For compari-
son, we also present the calculation with the sn100pn
interaction [37] in the gdsh model space (dashed lines),
with the effective charges ep ¼ 1.5e and en ¼ 0.5e. The
obtained Qs values are in reasonable agreement with the
data for the Xe and Ba isotopes but not for the Te isotopes.
The problem is seen in the calculated BðE2Þ values, which
largely underestimate the data. Even with adjusted effective
charges, it cannot be consistent with both Qs and BðE2Þ.
This comparison suggests the importance of including the
1g9=2 and 2f7=2 orbits into the gdsh shell-model space.
Within the quasi-SU(3) scheme in our gdshf calculation,

the partner orbits with Δj ¼ 2, ð1g9=2; 2d5=2Þ and
ð1h11=2; 2f7=2Þ, are coupled by the QQ force in Eq. (1).
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First, to see the effect of the quasi-SU(3) coupling between
the partner orbits ð1g9=2; 2d5=2Þ, the Vgd

QQ part is removed
from the full QQ interaction [see Eq. (3) in Ref. [15] ].
The calculation without Vgd

QQ is denoted by green lines in
Figs. 1(a)–1(f). It can be seen that for the Qs values in
Figs. 1(a)–1(c), the results do not differ much from the full
calculation.However, in Figs. 1(d)–1(f), the calculatedBðE2Þ
values without Vgd

QQ largely underestimate the data. This
means that, for all the isotopes, the quasi-SU(3) coupling in
the partner orbit ð1g9=2; 2d5=2Þ enhances the E2 collectivity.
The same conclusion was obtained in Ref. [15].
Next, a striking result occurs when we remove the QQ

interaction between the partner orbits ð1h11=2; 2f7=2Þ, Vhf
QQ.

As seen in Figs. 1(a)–1(c), immediately after N ¼ 80, the
calculated Qs values without Vhf

QQ (blue lines) begin to
deviate from that of the full calculation. It is noteworthy
that the curves bend at N ¼ 76 to keep the Qs value
positive (corresponding to an oblate shape). In other words,
it is the quasi-SU(3) coupling in the partner orbit
ð1h11=2; 2f7=2Þ that drives the oblate-to-prolate phase tran-
sition. Our result suggests N ¼ 76 as a critical point. Note
that this is directly concluded by Qs and not from the level
energies and BðE2Þs as usual. In Figs. 1(d)–1(f), the BðE2Þ
values without Vhf

QQ underestimate the data, except for the
Te isotopes that have Z numbers close to magicity. No
indication of an N ¼ 76 critical point is seen in the BðE2Þs.
In the quasi-SU(3) coupling scheme, the QQ matrix

elements, Vhf
QQ and Vgd

QQ, correlate with the nucleon
occupations. Let us take 128Xe to demonstrate this. We
introduce the variational parameters λ1 and λ2, which can
vary from 0 to 1, and substitute λ1V

hf
QQ and λ2V

gd
QQ for the

original terms Vhf
QQ and Vgd

QQ in the VQQ interaction. In
Fig. 2(a), we see that Qs is positive when λ1 ¼ 0. With
increasing λ1, Qs decreases and becomes −0.4 when
λ1 ¼ 1, which nicely reproduces the experimental data.
Stronger Vhf

QQ allows neutrons to excite more easily from

the gds shell to the upper-lying 1h11=2 and 2f7=2 orbits. As
seen in Fig. 2(b), the sum of neutron occupations in the
1h11=2 and 2f7=2 orbits increases correlatively with λ1. On
the other hand, as shown in Fig. 2(c), BðE2Þ increases with
λ2, indicating enhanced E2 collectivity. This enhancement
is the consequence of proton excitations from 1g9=2 to the
upper-lying 2d5=2 orbit. This can be seen in Fig. 2(d),
where, with increasing λ2, the proton 1g9=2 (2d5=2) occu-
pancy decreases (increases).
To show that enhanced collectivity induced by the quasi-

SU(3) coupling is not only for the ground state but also for
low-energy excitations, we present BðE2; I → I − 2Þ val-
ues of excited states for 128Xe and 130Xe in Fig. 3. The
calculated BðE2Þ values correctly reproduce the trend of
the data for both 128Xe and 130Xe. In the insets of Fig. 3, the
theoretical levels excellently reproduce the data for both the
ground state and the side bands built on the second excited
2þ2 state. The calculated energy ratios Exð4þ1 Þ=Exð2þ1 Þ ¼
2.46 and 2.37, respectively, for 128Xe and 130Xe, are in
good agreement with the experimental values (2.33
and 2.24). These ratios lie in the middle of the vibration
(2.00) and rotation (3.33) limits, and are consistent with γ
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softness (∼2.5). The 2þ side band may be understood as a γ
vibrational band. In both isotopes, the first excited 0þ2 state
lies above the 2þ2 state, which could be a member of another
band. In Fig. 3, we also display the BðE2Þ results from the
other three calculations, all of which, however, strongly
underestimate the data. The calculated BðE2Þs without
Vgd
QQ are clearly lower than those without Vhf

QQ, indicating
that Vgd

QQ contributes more to enhanced collectivity. On the
other hand, the sn100pn calculation with a smaller model
space departs considerably from the experimental values
for both isotopes.
To directly visualize the quasi-SU(3) coupling effect, the

potential energy surface (PES), with collective coordinates
Q0 and Q2 as variables, is obtained using the quadrupole-

constrained HFB method, where Qm ¼ hr2Yð2Þ
m i with m ¼

0 or 2. In Fig. 4(a), the PES for 128Xe is seen to have a
prolate energy minimum on the plane spreading in the γ
direction. Figures 4(b) and 4(c) show, respectively, the
influence of Vhf

QQ and Vgd
QQ. It is clearly seen in Fig. 4(b)

that without Vhf
QQ, the energy minimum moves to the oblate

side, corresponding to a sign change in Qs in Fig. 1(b) for
N ¼ 74. In Fig. 4(c), the PES minimum moves to a smaller
Q0, meaning that the result without Vgd

QQ becomes less
deformed. In the lower graphs [(d)–(f)], the shape evolution
is shown for a chain of Xe isotopes: 126Xe, 130Xe, and 134Xe.
The PES for 126Xe (N ¼ 72) indicates a prolate minimum
on a completely γ-unstable plane, and the shape for 134Xe
(N ¼ 80) is nearly spherical.
The above discussions suggest that the quasi-SU(3)

coupling scheme across the Z ¼ 50 and N ¼ 82 shell gaps
strongly influences the quadrupole collectivity. We have
added microscopical insights for the shape evolution
discussed in the empirically extended Casten triangle
[4]. Without the two key quasi-SU(3) coupling terms,
Vgd
QQ and Vhf

QQ, which act on the Δj ¼ 2 orbits and depend
sensitively on nucleon occupation, no large quadrupole
collectivity could be developed, and no oblate-prolate
shape phase transition would occur.

Finally, we mention that in the mass-130 region, two or
more different shapes can appear in the low-energy region
of one nucleus, exhibiting a phenomenon of shape coex-
istence [58]. Tables I and II use 130Xe and 130Ba as examples
to discuss their BðE2Þ and Qs values. For both nuclei, the
negative Qs for 2

þ
1 and 4þ1 indicates a prolate shape in the

ground-state band. However, for the 2þ2 state in 130Xe,Qs ¼
0.10ð10Þ eb corresponds to a less-deformed oblate shape.
Furthermore, the magnitude of the measured Qs ¼
−0.38þ14

−12 eb for 2þ1 is considerably reduced with respect
to the transition quadrupole moment jQtj ¼ 0.71 eb esti-
mated from the experimental BðE2; 2þ1 → 0þ1 Þ by the
simple axial rotor model, which indicates γ instability. In
contrast, for 2þ1 in 130Ba, jQtj ¼ 0.96 eb estimated from
BðE2; 2þ1 → 0þ1 Þ is close in magnitude to Qs ¼ −1.02ð16Þ
eb, which is expected for a stable axial-prolate shape.
Discussion of shape coexistence involves mixing of con-
figurations belonging to different shapes, which is difficult
for a usual empirical classification.
To summarize, the symmetry-based discussion with the

Casten triangle can tell us what atomic nuclei do, but it
cannot tell us why [1]. Thus, we need a microscopic
analysis using methods dealing with nucleons and their
interactions. The present Letter has taken a step forward.
For the Te, Xe, and Ba isotopes in the mass-130 region, we
performed HFBþ GCM calculations with the PMMU
Hamiltonian. We emphasized that spectroscopic quadru-
pole moments provide the most decisive information
for nuclear shapes. Our detailed analysis for 124–130Xe
demonstrated that the inclusion of the 1g9=2 and 2f7=2
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TABLE I. BðE2Þ values for positive-parity yrast states and
some other collective states in 130Xe and 130Ba. Experimental data
are taken from Refs. [43,55,56].

130Xe (W.u.) 130Ba (W.u.)

Jπi → Jπf Experimental Calculated Experimental Calculated

2þ1 → 0þ1 32(3) 34 57.9(17) 50.3
4þ1 → 2þ1 47(4) 54 78.9(13) 77.0
6þ1 → 4þ1 60þ14

−12 68 94(6) 92.0
2þ2 → 2þ1 37(3) 48 45.0
2þ2 → 0þ1 0.23(2) 0.20 1.0

TABLE II. Qs values for positive-parity yrast states and some
other collective states in 130Xe and 130Ba. Experimental data are
taken from Refs. [43,55,56].

130Xe (eb) 130Ba (eb)

Jπ Experimental Calculated Experimental Calculated

2þ1 −0.38þ17
−14 −0.26 −1.02ð16Þ −0.60

4þ1 −0.41ð12Þ −0.32 −0.77
2þ2 0.1(1) 0.25 0.54
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orbits in a major gdsh-shell model space is essential for
describing all the shape characteristics. The QQ inter-
actions acting on the ð1h11=2; 2f7=2Þ and ð1g9=2; 2d5=2Þ
partner orbits are the origin of shape evolution. We have
discovered that while the QQ force acting on the
ð1g9=2; 2d5=2Þ orbit pairs tends to drive the evolution toward
the O(6) dynamical limit, that acting on ð1h11=2; 2f7=2Þ)
robustly changes the shape from oblate to prolate at
N ¼ 76, moving the deformed systems along the
SUð3Þ-SUð3Þ side of the extended Casten triangle with
N ¼ 76 as a critical point.
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