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Jets of hadrons produced at high-energy colliders provide experimental access to the dynamics of
asymptotically free quarks and gluons and their confinement into hadrons. In this Letter, we show that the
high energies of the Large Hadron Collider (LHC), together with the exceptional resolution of its detectors,
allow multipoint correlation functions of energy flow operators to be directly measured within jets for the
first time. Using Open Data from the CMS experiment, we show that reformulating jet substructure in terms
of these correlators provides new ways of probing the dynamics of QCD jets, which enables direct imaging
of the confining transition to free hadrons as well as precision measurements of the scaling properties and
interactions of quarks and gluons. This opens a new era in our understanding of jet substructure and
illustrates the immense unexploited potential of high-quality LHC data sets for elucidating the dynamics
of QCD.
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Introduction.—High-energy jets produced at the Large
Hadron Collider (LHC) provide a unique opportunity to
study the nearly conformal dynamics of high-energy quarks
and gluons in quantum chromodynamics (QCD) as well as
their confinement into hadrons. The seminal introduction of
robust jet algorithms [1–3] has enabled detailed measure-
ments of the structure of energy flow within jets, providing
a new window into these phenomena. This in turn has
transformed our ability to search for new physics at the
LHC [4–6] and offers the opportunity to transform our
understanding of QCD itself [7,8].
The study of energy flow in QCD collisions has a long

history [9–15]. Event shape observables were first intro-
duced as resolution variables acting as infrared-safe proxies
for the underlying S-matrix elements of quarks and gluons.
These observables were well suited for the Large Electron-
Positron (LEP) Collider era where the primary interest was
in the distribution of jets themselves, with each individual
jet being relatively low energy and consisting of only a few
hadrons. By contrast, the LHC provides high-statistics
samples of individual jets, with high energies
(pT > 500 GeV) and high particle multiplicities, and the
substructure of jets can be measured with remarkable
angular resolution [16–18]. This massive leap provides

an opportunity to rethink the language used for character-
izing energy flow in QCD.
Instead of using shape observables, which take as

primary the underlying S-matrix elements, it was argued
in Ref. [19] that as QCD approaches its conformal limit,
one should switch to a characterization of jets in terms of
correlation functions. This enables a beautiful reframing of
jet substructure in terms of universal scaling behavior and
the operator product expansion (OPE) algebra of light-ray
operators. Despite the theoretical elegance of the correlator-
based approach, measurements of correlators in the per-
turbative regime require truly high-energy jets, measured
with excellent angular resolution, much beyond what was
available in the LEP era. Early studies of these observables
in both theory [20–24] and experiment [25–34] were thus
largely forgotten to history. With the advent of the LHC, the
strong historical preference for jet shapes has left the
simplest questions about correlations of energy flow in
gauge theories experimentally unanswered. [Figures 1
and 2 provide an affirmative answer to Polchinski’s ques-
tion at 47∶04 of [35]. We also hope that this introduction
provides an explanation (although not an excuse) for
Maldacena’s response: “People do not do this. I haven’t
figured out why they don’t.”]
To bridge the gap between the real-world environment of

QCD at the LHC and theoretical developments in con-
formal field theory, a program was initiated in Ref. [36] to
reformulate jet substructure in terms of correlators. This
program builds on earlier visionary work in the context of
conformal field theories [19,37–41]. In this Letter, we take
the next step and use publicly available data released by the
CMS experiment to perform the first ever analysis of
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correlation functions of energy flow operators in high-
energy jets. (We use the term “analysis” instead of
“measurement” to highlight that we have not corrected
the data for detector effects.) These studies reveal new ways
of probing jets at the LHC and transform the beautiful
underlying theoretical structures into experimental realities.
Observables from correlators.—Correlation functions

are a standard approach to characterizing physical systems,
typically building in complexity from simple low-point
correlators to more complicated higher-point correlators.
Instead of correlation functions of local operators fami-
liar from condensed matter systems, the objects of inte-
rest in collider experiments are correlation functions,
hEðn⃗1ÞEðn⃗2Þ � � � Eðn⃗kÞi, of the asymptotic energy flow
operator [19,37,38,42–46]:

Eðn⃗Þ ¼ lim
r→∞

Z
∞

0

dtr2niT0iðt; rn⃗Þ; ð1Þ

where Tμν is the stress-energy tensor. (See Ref. [47] for a
variant of the energy flow operator relevant for under-
standing hadron mass effects.) These correlation functions
(which we refer to generically as EECs) are the funda-
mental objects of the theory, and are described by an OPE
structure [19,46,48–50] that encodes the internal structure
of jets. [The positivity of expectation values of Eq. (1) is an
example of an average null energy condition (ANEC)
[19,51–55], which pleasingly shares the same initialism
as analyzing N-point energy correlators.] Of central physi-
cal importance is the scaling behavior of correlators as a
function of angular size. To isolate this feature, Ref. [36]
introduced one-dimensional projections of the higher-point
correlators obtained by integrating over their shape, keep-
ing only their longest side fixed. This defines the N-point
projected correlators:

ENCðRLÞ ¼
�YN

k¼1

Z
dΩn⃗k

�
δðRL − ΔR̂LÞ

·
1

ðEjetÞN
hEðn⃗1ÞEðn⃗2Þ…Eðn⃗NÞi; ð2Þ

where dΩn⃗ is the area element on the detector, ΔR̂L is an
operator selecting the largest angular distance between the
N measured directions, and the average is over an ensemble
of high energy jets with energy Ejet. For hadron collider
measurements, we use the standard longitudinally-boost-
invariant transverse momentum pT as the energy coordi-
nate andΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δy2 þ Δϕ2

p
in the rapidity-azimuth plane

as the angular coordinate. (For those familiar with the
discussion of energy correlators in the CFT literature, one
should simply associate ΔR2 with the conformal cross ratio
ζ.) In the perturbative regime, the projected correlators
exhibit a single-logarithmic scaling governed by the twist-2
spin j ¼ N þ 1 anomalous dimensions [36]. They therefore
capture the scaling properties of a generic N-point corre-
lator in a simple one-dimensional observable.
CMS open data.—Despite being the fundamental objects

of the theory, none of these correlators, nor their scalings,
have ever been measured at the LHC. (Avariant of the EEC
using jets instead of individual particles has been measured
by ATLAS [56,57] but due to its use of jets, it is not well
suited for studying the small-angle limit.) Furthermore, to
our knowledge, no correlator with k ≥ 3 has ever been
measured at a collider experiment. Fortunately, the public
release [58] of research-grade collider datasets by the CMS
experiment [59,60] has enabled a new era of open explor-
atory studies [61–72], allowing us to analyze these corre-
lators on real data. We have found the use of Open Data to
be essential for extracting a consistent picture for the
behavior of higher-point correlators, which are not guar-
anteed to be accurately described by parton shower
generators commonly used to study jet substructure observ-
ables. While official measurements by the experimental
collaborations remain the gold standard in the field, we
believe that Open Data studies are an essential tool for
theorists exploring the frontiers of QCD.
Our analysis is based on a reprocessed dataset of jets

culled from the CMS 2011A Open Data [73] and made
public in a simple, reusable “MIT Open Data” (MOD)
format by Refs. [68,74]. These jets, clustered using the anti-
kt algorithm with R ¼ 0.5 [2,3], have transverse momenta
pT ∈ ½500; 550� GeV and pseudorapidity jηj < 1.9. To
minimize detector effects, we focus on track-based observ-
ables (i.e., those only using charged particles) for most of
this Letter, given the excellent track reconstruction perfor-
mance of CMS [75], including within jets [76]. Tracks are
easily incorporated into the theoretical description of
correlators using track functions [77–81]. We identify
charged particles from particle flow candidates (PFCs)
[82] provided by CMS, which synthesize tracking and

FIG. 1. The two-point correlator in CMS Open Data, restricted
to charged hadrons. Distinct scaling behaviors associated with
asymptotically free quarks and gluons and free hadrons are
clearly visible.
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calorimeter information. We follow the procedure in
Ref. [68] of using charged hadron subtraction (CHS)
[83] to mitigate pileup and restricting to PFCs with pT >
1 GeV to minimize acceptance effects. More detailed
studies incorporating detector unfolding will be presented
elsewhere.
Imaging the confining transition to free hadrons.—The

simplest jet substructure observable is the two-point corre-
lator, which probes the dynamics of a jet as a function of the
angular scale RL. Here, RL is associated with a transverse-
momentum exchange of ∼pjet

T RL between two idealized
calorimeters at infinity. Since QCD confines, we expect to
see two distinct scaling regimes, corresponding to the
nearly conformal dynamics of quarks and gluons at large
angular scales and to free hadrons at small angular scales.
In Fig. 1, we show the two-point correlator extracted

from the CMS Open Data, which provides a striking
confirmation of this picture. We now describe each region
of this plot working from large to small angular scales. For
RL ≳ 0.5, the angular size of the correlator is larger than the
R ¼ 0.5 radius of the jet, leading to a behavior that is an
artifact of the jet clustering algorithm. Moving to smaller
angles, we enter a wide regime of universal scaling
behavior associated with the perturbative interactions of
quarks and gluons, and more explicitly the light-ray OPE
and the twist-2 spin-3 anomalous dimensions. This pris-
tine scaling behavior occurs for over a decade, until at
RL ∼ ΛQCD=p

jet
T ∼ 10−2, there is a clear break in the scaling

behavior corresponding to the confinement of quark and
gluon degrees of freedom into hadrons. Below this, we
observe a nearly perfect RLdσ=dRL ∝ R2

L scaling, corre-
sponding to uniformly distributed hadrons. Quite remark-
ably, even if we had no understanding of QCD, we would
be able to infer from this analysis that hadrons propagate
freely at long distances. (Strictly speaking, this only shows
that energy is uniformly distributed at small angles. We are
aware of two ways this can happen: either there are no
interactions or there are infinitely strong interactions
[19,84,85].)
The ability to directly observe a clear transition between

interacting partons and free hadrons relies on the high
energies of the LHC, where these phases are cleanly
separated. Unlike in condensed matter systems where
confinement can be imaged as a function of time [86],
one might have naively thought that observing this tran-
sition at the LHC would be impossible using only asymp-
totic measurements. Fortunately, the time evolution of the
jet formation is faithfully imprinted into the angular scale of
the correlator, τ ≃ 1=ðpTR2

LÞ, allowing us to image the jet
[87]. We believe this opens the door to further studies of the
confinement transition using LHC data, complementary to
the recent Lund plane measurement from ATLAS [88],
as well as applications to the understanding of the
time structure of jet quenching in heavy-ion collisions
[89–92].

Ratios of projected correlators.—In the wide perturba-
tive window in Fig. 1, the projected N-point correlators
exhibit a scaling governed by the twist-2 spin-N þ 1
anomalous dimensions, providing a precision test of
perturbative QCD and a measure of the strong coupling
αs [36]. These correlators have closely related leading
nonperturbative corrections for different values of N, and
thus by taking the ratio to the two-point correlator, we can
cancel the leading nonperturbative contribution and isolate
a clean perturbative scaling. Taking the ratio has the added
benefit that it removes classical scaling contributions: in the
absence of anomalous dimensions, this ratio would be
unity. A nonvanishing scaling in the ratio is therefore a
genuine quantum effect associated with the scaling behav-
ior of the light-ray OPE.
In Fig. 2, we show the ratios of projected correlators up

to the six-point correlator. In the perturbative regime, a
clear scaling behavior is observed. The slope increases asN
is increased due to the fact that the twist-2 anomalous
dimension governing the scaling grows monotonically with
spin. This provides a validation of the predictions of
Ref. [19] in public collider data. Precision measurements
of these correlators would be extremely interesting for
probing implementations of higher-order Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) in parton show-
ers [93] and further testing the light-ray OPE.
Additionally, measurements of this scaling behavior

provide direct access to αs and admit a number of
advantages over previous proposals to extract αs from jet
shapes. In particular, this scaling can be measured directly
without grooming algorithms [94,95], and can be computed
on tracks to significantly reduce experimental uncertainties.
Furthermore, measuring the scaling for a family of pro-
jected correlators enables one to disentangle the effects of
the parton distribution functions. We show a comparison of

FIG. 2. Ratios of the N-point projected correlators to the two-
point correlator, isolating anomalous scaling in the shaded
perturbative regime.
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CMSOpen Data to leading-logarithmic QCD predictions in
Supplemental Material [96].
Shapes of energy correlators.—Moving beyond scaling

behavior, the shape dependence of higher-point correlators
yields insights into the detailed structure of interactions
between quarks and gluons. For example, three-point
correlators encode spin correlations [105–107] arising from
the spin-1 nature of gluons. Measurements of higher-
point correlators are also useful for testing the incorpo-
ration of higher-point splitting functions in parton shower
generators.
Here, we focus on the three-point correlator. For fixed

RL, the three-point correlator is a function of two cross
ratios whose analytic form was computed in Ref. [108] to
leading order (LO) in QCD. For histogrammed analyses, it
is convenient to map the domain of definition of the three-
point correlation function to a rectangular grid. Denoting
the long, medium, and small sides of the triangle spanned
by the operators as ðRL; RM; RSÞ, we define the coordi-
nates:

ξ ¼ RS

RM
; ϕ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðRL − RMÞ2
R2
S

s
: ð3Þ

This parametrization blows up the OPE region into a line,
with ξ and ϕ the radial and angular coordinates about the
OPE limit, respectively. More details can be found in
Supplemental Material [96].
In Fig. 3, we show the shape dependence of the three-

point correlator in the CMS Open Data, fixing RL ∼ 0.25. It
exhibits a rich shape characteristic of the 1 → 3 interaction
in QCD. This is the first analysis of a three-point correlator
in QCD, and more generally, we believe that it is the first
experimental analysis of a three-point correlator of light-ray
operators in any theory. The rich LHC data will also enable

the measurement of higher-point correlators, as their
calculations become available.
Higher-point scaling.—In addition to measuring the

shape of the three-point correlator for fixed RL, one can
also measure the scaling with RL for fixed shapes. One of
the remarkable features of the light-ray OPE structure of the
energy correlators is that this scaling can be predicted for
arbitrary point correlators in conformal field theory [19].
In the perturbative regime, where the light-ray OPE is
applicable in QCD, it predicts that the scaling of an
N-point correlator of fixed shape is the same as for the
projectedN-point correlator. This is a much more nontrivial
prediction of perturbative QCD, which unlike the projected
scaling is not guaranteed to be described by parton shower
simulations, making it particularly interesting to study
in data.
We focus for concreteness on the scaling of the three-

point correlator for fixed shapes. Unfortunately, a LO
calculation of the three-point correlator on tracks is not
yet available, although it can in principle be obtained using
the track function formalism [77–81]. We therefore con-
sider only the measurement on all hadrons, though detector
effects (which have not been corrected) are larger. In Fig. 4,
we show the scaling for the three-point correlator measured
on all hadrons for three different shapes, denoted by
A, B, and C, whose precise parametrization is given in
Supplemental Material [96]. The ratio to the projected
three-point correlator is shown in the bottom panel. We see
consistency with the prediction that the scaling for the

FIG. 3. The normalized shape dependence of the three-point
correlator. Shown here is a slice of the data at RL ∼ 0.25 with the
coordinates ðξ;ϕÞ defined in Eq. (3).

FIG. 4. Scaling behavior for fixed shapes of the three-point
correlator, whose parametrization is given in Supplemental
Material [96]. The ratio to the projected three-point correlator
is shown in the bottom panel, where flat ratios correspond to the
perturbative prediction in the shaded region. Unlike the previous
plots, these results are for all hadrons.
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shapes is the same as for the projected correlators, though
more data and a proper unfolding would be required to
make a definitive statement. Interestingly, as shown in
Supplemental Material [96], this behavior is in tension with
the default parton shower in PYTHIA 8.226 [109]. This
strongly motivates both more precise measurements of this
scaling, and further work to implement the 1 → 3 splitting
functions into parton showers [110–112].
Conclusions.—In this Letter, we argued that taking full

advantage of the high energies, multiplicities, and angular
resolution of the LHC for studying QCD enables a
paradigm shift to thinking about jet substructure in terms
of correlation functions of energy flow operators. Using
publicly available CMS Open Data, we showed that the
underlying theoretical beauty of the correlator-based
approach could be accessible in future experimental ana-
lyses, and we illustrated how it provides new perspectives
on jets at the LHC.
The focus of this Letter has been on the phenomeno-

logical applications of correlators to jets at the LHC. But
the rich theoretical structure underlying energy correlators,
which has seen remarkable recent progress from numerous
directions [48–50,106,108,113–121], also provides signifi-
cant motivation for reformulating jet substructure in this
language. This combination of new theoretical techniques
and phenomenological applications is truly exciting and
opens the door to significant progress in our understanding
of QCD using the unique experimental capabilities of
the LHC.

All observables used in this Letter are implemented in
publicly available code [122].
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