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The randomness of the quantum tunneling process induces superhorizon curvature perturbations during
cosmological first-order phase transitions. We for the first time utilize curvature perturbations to constrain
the phase transition parameters, and find that the observations of the cosmic microwave background
spectrum distortion and the ultracompact minihalo abundance can give strict constraints on the phase
transitions below 100 GeV, especially for the low-scale phase transitions and some electroweak phase
transitions. The current constraints on the phase transition parameters are largely extended by the results of
this work, therefore provide an novel approach to probe related new physics.
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Introduction.—The cosmological first-order phase tran-
sitions (PTs) are expected to take place in many well-
motivated new physics models [1–4]. During a first-order
PT, at least two nondegenerated local minima simultane-
ously appear, and the metastable phase decays due to
quantum tunneling or thermal fluctuations [5–8]. True
vacuum bubbles copiously nucleate and then expand until
they collide with each other, releasing the vacuum energy
into bubble walls and background plasma. As violent
processes in the early Universe, the PTs are expected to
produce observable relics including gravitational waves
(GWs) [9,10], primordial magnetic fields [11–13] and
baryon asymmetry [14]. Since the electroweak PT in the
standard model of particle physics is crossover [15], the
experiments aiming at observing the relics of the first-order
PTs help to determine or constrain the parameters of new
physics models. Observing gravitational waves produced
during the PTs is one of the main scientific goals of various
observational projects, such as LISA [16], Taiji [17],
TianQin [18], aLIGO [19], and SKA [20]. The correspond-
ing constraints from the upper bound of stochastic GW
backgrounds can be found in Ref. [21] (NANOGrav),
Ref. [22] (PPTA), and Ref. [23] (LIGO-Virgo).
We find that the randomness of the quantum tunneling

process during the PTs can induce curvature perturbations
both outside and inside the Hubble horizon, which can be
orders of magnitude larger than primordial perturbations
from inflation [24]. The asynchronism of vacuum decay
affects the averaged equation of state within different

Hubble horizons during the PTs, then induces curvature
perturbations at superhorizon scales after the PTs. This
kind of curvature perturbations is independent of that
produced from quantum fluctuations during inflation.
The idea of inducing curvature perturbations from PTs
was proposed in the 1980s [25–30] and the case β=H� ≲
Oð1Þ is ruled out. Except the cosmic microwave back-
ground (CMB) observations [31], the current limits of the
cosmic microwave background spectral distortions, the
helium abundance, and the ultracompact minihalo
(UCMH) abundance give constraints on curvature pertur-
bations for 1 Mpc−1 < k < 107 Mpc−1, which allow us to
constrain the PTs that happen at energy scales up to
100 GeV, such as QCD phase transitions with a large
neutrino chemical potential [32], dark phase transitions
predicted in some composite dark matter models, strongly
interacting massive particle dark matter models, and Twin
Higgs models, etc. [33], and some electroweak PTs
motivated for the baryon asymmetry and dark matter
[34–37]. These upper bounds on PR are used to be
employed to constrain the inflationary models and the
primordial black hole abundance [38,39]. In this Letter, we
for the first time utilize upper bounds on PR to constrain
the PT parameters through induced curvature perturbations,
which largely extends the current constraints from the
mostly discussed GWs from bubble collisions and sound
waves. For convenience, we choose c ¼ 8πG ¼ 1 through-
out this Letter.
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Curvature perturbations induced from the PTs.—The
nucleation rate of true vacuum bubbles generally takes the
exponential form [5,40]

ΓðtÞ ¼ Γ0eβt; ð1Þ

where Γ0 and β are approximately constants. For fast PTs,
β−1 is also an estimation of the PT duration time. The
averaged probability of the false vacuum, FðtÞ, reads [29]

FðtÞ ¼ exp

�
−
4π

3

Z
t

ti

dt0Γðt0Þa3ðt0Þr3ðt; t0Þ
�
; ð2Þ

where ti is the time when quantum tunneling starts and
rðt; t0Þ≡ R

t
t0 a

−1ðτÞdτ is the comoving radius of true vac-
uum bubbles. Before ti, the field settles in the false vacuum
so that Fðt < tiÞ ¼ 1. After ti, FðtÞ decreases since the
vacuum energy transfers into bubble walls and background
plasma. The PT temperature T� is evaluated at the perco-
lation time tp where FðtpÞ ¼ 0.7. The Friedmann equation
and the equations of motion read

H2 ¼ 1

3
ðρr þ ρw þ ρvÞ; ð3Þ

ρv ¼ FðtÞΔV; ð4Þ

dðρr þ ρwÞ
dt

þ 4Hðρr þ ρwÞ ¼
�
−
dρv
dt

�
; ð5Þ

where H is the Hubble parameter, ρr, ρw, and ρv are the
energy densities of background radiation, bubble walls, and
the false vacuum, respectively. ΔV is the energy density
difference between the false and true vacua. In Eq. (5) we
assume the bubble wall velocity is close to 1 so that bubble
walls and the background plasma are both ultrarelativistic.
The left-hand side of Eq. (5) represents the evolution of
bubble walls and background plasma in the expanding
Universe and the right-hand side results from the decay of
the vacuum energy.
Since in the expanding Universe ρr and ρw decrease as

a−4 [41] while ΔV remains almost constant, so in the
regions where the false vacuum decays later, the total
energy density becomes larger after a PT. Thus, the
asynchronism of the vacuum decay process in different
Hubble horizons induces superhorizon curvature perturba-
tions. We notice that the uncertainty of the vacuum decay
time is about β−1 at the length scale of β−1, so that the
equations of motion (3), (4), and (5) imply the correspond-
ing amplitude of the energy density δρðβ−1Þ=ρ is approxi-
mately αβ−1. Here, δρðk−1Þ denotes the averaged density
perturbation in a volume ∼k−3, and α≡ ΔV=ρrðtpÞ repre-
sents the strength of the PTs. Since the vacuum decay
process becomes irrelevant at a length scale larger than β−1,
causality requires δρðk−1Þ=ρ ∝ k3=2 at the infrared region.

[For k−1 ≫ β−1, the central-limit theorem implies the
standard deviation σðk−1Þ ¼ σðβ−1Þðβ−1kÞ3=2. This be-
havior is similar to that in Refs. [42,43], where the
Poisson distribution of primordial black holes induces cur-
vature perturbations with the power spectrum PRðkÞ ∝ k3.]
Then, the estimation of the standard deviation of δρ=ρ at the
Hubble horizon scale can be described as

δH ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδρðH−1� Þ=ρÞ2

q
∝ αðβ=H�Þ−5=2; ð6Þ

which is valid for α < 1 and β=H� ≫ 1. The approximation
(6) is then verified by numerical results of δHðα; β=H�Þ in
the Supplemental Material [44], where we apply the
postponed vacuum decay mechanism proposed in our
previous work [24]. We find that δH is proportional to α
for different values of β=H�, and δH=α approaches the
scaling relation ðβ=H�Þ−5=2 as in Eq. (6) for β=H� ≳ 10.
The power spectrum of curvature perturbations, PRðkÞ,

is directly related to δH in the Press-Schechter formalism
[45–47]

δ2H ¼ 16

81

Z
∞

0

dk
k
ðkRHÞ4W2ðk; RHÞPRðkÞ; ð7Þ

where RH ¼ 1=ðaHÞ is the comoving Hubble radius at the
end of the PTs and we apply a Gaussian form window
function [We choose the Gaussian type window function
WGSðk; RHÞ ¼ expð−k2R2

HÞ to strongly suppress the con-
tribution from perturbations with k > R−1

H , which is in
accordance with the calculation of δH where we only take
into account the delay of vacuum decay in the Hubble-sized
regions and neglect the contribution from the smaller
scales, k≳ R−1

H .] Wðk; RHÞ ¼ expð−k2R2
HÞ. Since causal-

ity requires PRðkÞ ∝ k3 for k ≪ β−1, we can obtain the
approximate result of PRðkÞ in terms of the numerical
results of δHðα; β=H�Þ,

PRðkÞ ¼ 34.5α2½fðβ=H�Þ�2ðkRHÞ3; ð8Þ

where the constant 34.5 is obtained from Eq. (7). Since in
the infrared regions PRðkÞ ∝ k3, curvature perturbations
induced during the PTs are much smaller than primordial
perturbations from inflation at the CMB scales and do not
affect the CMB observables.
Constraints on the PT parameters.—Since the PTs are

expected to induce large curvature perturbations at small
scales, the upper bounds on PRðkÞ can be converted into
constraints on the PT parameters α, β=H�, and T�. The
observations of CMB and large-scale structure give strict
constraints on the power spectrum of curvature perturba-
tions, PRðkÞ ∼ 2 × 10−9, at large scales k≲Oð1Þ Mpc−1.
At smaller scales, PRðkÞ is constrained by other observ-
ables, such as (i) the limits of the CMB spectral distortions,
(ii) the helium abundance, (iii) the pulsar timing constraint
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on the UCMH abundance, and (iv) the gamma-ray con-
straint on the UCMH abundance.
Setting the scale factor at present, a0 ¼ 1, in the

radiation-dominated Universe, R−1
H =ð104 Mpc−1Þ ∼ T�=

ð1.1 MeVÞ, which roughly determines the range of T�
constrained by each upper bounds of PRðkÞ. We set the
cutoff of Eq. (8) at the Hubble horizon scale k ¼ R−1

H to
obtain a conservative estimation. In Fig. 1, we show the
constraints on α and β=H� in the range T� ∼ 10−6 −
103 GeV from each upper bounds of PRðkÞ. The limit
of CMB spectral distortions, including y distortion and μ
distortion, implies PRðkÞ ≲ 10−4 for the scales of
1 Mpc−1 ≲ k≲ 104 Mpc−1 [48–50], which gives con-
straints on the PTs with T� < 1 MeV, as shown in the
green lines. In the range 104 Mpc−1 ≲ k≲ 105 Mpc−1,
PRðkÞ has to be smaller than 0.01 to avoid violating the
BBN process and the prediction of primordial helium
abundance [51–53]. The blue lines show the constraint
from the observed helium abundance, constraining the PTs
with T� ∼ 1–10 MeV. The authors of Refs. [54,55] find
that UCMHs produce an observable period derivative of
pulsars, and they apply the pulsar timing data to give
the upper bound PRðkÞ≲ 10−6 for the scales of 4 ×
103 Mpc−1 ≲ k≲ 4 × 105 Mpc−1 setting the redshift of
the UCMH collapse zc ¼ 1000 and detection threshold
s ¼ 10 ns. The orange lines show the constraint from the
limit of UCMH abundance, constraining the PTs with
T� ∼ 0.3 MeV − 1 GeV. The constraint presented in the
dashed lines is from the nonobservation of gamma rays in
UCMHs by the Fermi large area telescope, which applies in
the case that WIMPs explain the nature of dark matter
[56–59]. Here, we choose the mass of WIMP parti-
cles mχ ¼ 1 TeV, the annihilation cross section hσvi ¼
3 × 10−26 cm3 s−1 and the UCMH redshift zc ¼ 1000 as in
Fig. 6 of Ref. [56]. This upper bound imposes a very strong
constraint on all PTs below 100 GeV. All the constraints
above are evaluated at the 95% confidence level.
Since each of the constraint curves in Fig. 1 has a

fairly flat bottom in a certain range, we can assume the

constraints are irrelevant of T in those ranges and obtain the
constraints in the α − β=H� plane, as shown in Fig. 2. We
obtain strict constraints on the QCD first-order PTs [32,61]
(The standard QCD phase transition is crossover, but it
becomes first order in the case of sufficiently large neutrino
chemical potential [32].) and the low-scale dark PTs [62].
The constraint in this work is more strict on α than on
β=H�, as Eq. (8) implies. The most strict constraint on α is
given by the limit of the UCMH abundance. In the
case of β=H� ≲ 10, the parameter space α ≳ 2 × 10−3

(α ≳ 6 × 10−4) has been excluded model independently
(model dependently) for 0.3 MeV≲ T� ≲ 100 MeV
(T� ≲ 10 GeV). Depending on the nature of dark matter,
we also give the constraint on electroweak first-order PTs.
In the case of T� ¼ 100 GeV, we obtain α≲ 0.1 for
β=H� ¼ 10 and β=H� ≳ 20 for α ¼ 0.2, as shown in
Fig. 1. As a comparison, the current constraint from the
PTA experiments gives α ≲ 0.1 for β=H� ¼ 10 in the range
0.1 MeV≲ T� ≲ 0.1 GeV at the 95% confidence level
[21,22]. Reference [60] obtains α≲Oð0.06Þ for the PTs
after the BBN process (T� ≲ 1 MeV) since the decay
products of false vacuum affects the prediction of BBN
process. Compared to the previous constraints, this work
gives a much more strict constraint on α in a larger range of

FIG. 1. The left and right panel show the constraint on α and β=H� in the range T� ∼ 10−6 − 103 GeV, respectively, where we set
β=H� ¼ 10 (left) and α ¼ 0.2 (right). The solid gray line and the dot-dashed gray line represent the current constraint from the upper
bound of stochastic GW background [22] and big bang nucleosynthesis [60], respectively.

FIG. 2. The excluded parameter spaces of α and β=H� obtained
from each constraint on PRðkÞ.
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T�. In the near future, the space-based GW detectors, such
as LISA and Taiji, are sensitive to the PTs around the
electroweak energy scale. If the future GW observables
conflict with the model-dependent constraint (the dashed
line shown in Figs. 1 and 2), the discovery of GWs from the
PTs in turn gives constraints on the annihilation cross
section of the dark matter models.
Conclusion and discussion.—We quantitatively inves-

tigate the superhorizon curvature perturbations induced by
the first-order PTs, and for the first time give constraints on
the PT parameters using various upper bounds of PRðkÞ.
The asynchronism of vacuum decay in different Hubble
horizons induces large superhorizon curvature perturba-
tions, which are then constrained by various observational
results, such as the limits of the CMB spectral distortions,
the helium abundance, and the UCMH abundance. This
work gives strict constraints on α and β=H� for the PT
temperature below 100 GeV, including dark PTs, QCD
first-order PTs and some electroweak first-order PTs. The
result largely expands the currently excluded parameter
spaces obtained from the nonobservation of the stochastic
GW backgrounds, and give strict constraints especially on
the low-temperature PTs and the slow PTs.
We have neglected the impact of thermal corrections on

the PT dymanics [63–66] by assumingΔV is a constant, the
bubble velocity vw ≲ 1 and energy transfer to the back-
ground plasma is instantaneous. Here, we qualitatively
discuss how the thermal corrections affect the final result.
The correction to ΔV may depend on T, but as long as ΔV
decreases more slowly than ρr and ρw, the constraints stay
in the same order of magnitude. For the weak PTs, vw tends
to become smaller due to the friction of the background
plasma. The superhorizon PRðkÞ is proportional to v3w
because the averaged bubble radius at the percolation time,
R� ∼ vw=β and causality requires δρðk−1Þ=ρ ∼ k3=2. If the
PT dynamics is feebly coupled to the plasma, the scalar
field can oscillate in its quadratic potential for a long period
and the energy density fraction of the scalar field increases
with time. In this case, the induced PRðkÞ increases as
a2ðtÞ until the domination of the scalar field. Then, we have
more strict constraints on the PT parameters, particularly
for the PTs that happen at slightly higher temperatures.
In some inflationary models, for example, the ultra-slow-

roll inflation [67], the small-scale PR is already very large
before the PTs, induced curvature perturbations can
become larger than the prediction of Eq. (8) as numerically
studied in Ref. [68].
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