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High-dimensional (HD) entanglement enables an encoding of more bits than in the two-dimensional
case and promises to increase communication capacity over quantum channels and to improve robustness
to noise. In practice, however, one of the central challenges is to devise efficient methods to quantify the
HD entanglement explicitly. Full quantum state tomography is a standard technology to obtain all the
information about the quantum state, but it becomes impractical because the required measurements
increase exponentially with the dimension in HD systems. Hence, it is highly anticipated that a new method
will be found for characterizing the HD entanglement with as few measurements as possible and without
introducing unwarranted assumptions. Here, we present and demonstrate a scan-free tomography method
independent of dimension, which only requires two measurements for the characterization of two-photon
HD orbital angular momentum (OAM) entanglement. Taking Laguerre-Gaussian modes of photons as an
example, the density matrices of OAM entangled states are experimentally reconstructed with very high
fidelity. Our method is also generalized to the mixed HD OAM entanglement. Our results provide realistic
approaches for quantifying more complex OAM entanglement in many scientific and engineering fields
such as multiphoton HD quantum systems and quantum process tomography.
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Quantum entanglement is a key ingredient in a variety of
quantum information processing, such as quantum telepor-
tation [1–3], quantum superdense coding [4,5], quantum
cryptography [6], and quantum imaging [7,8]. Encoding
several qubits per transmitted photon yields significant
benefits for increasing channel capacity and resistance
to noise [9,10]. Hence, increasing the dimensionality of
entangled quantum systems is one of the next key
technological steps towards the realization of more prac-
tical quantum information protocols, and it also offers
novel fundamental research possibilities in quantum
physics [11,12]. Several discrete photonic degrees of free-
dom have been considered for the creation of entanglement
in multiple dimensions, such as path [13,14], time [15,16],
and frequency bins [17–19]. The entanglement is also
embedded in the spatial mode [20–22], which occurs in an
infinite dimensional Hilbert space and is receiving more
attention as a powerful method in quantum information.
However, for entanglement in any degree of freedom, the
certification of experimentally generated high-dimensional
(HD) entangled states is a crucial and difficult task [23].
To achieve this goal, some quantum tomographic

methods are presented and demonstrated experimentally,
such as traditional full quantum state tomography (FQST)
[24–26], mutually unbiased bases tomography [27,28], and

symmetric informationally complete positive-operator val-
ued measure (POVM)-based quantum tomography [29,30].
Usually, these methods are based on the measurement of
several POVMs in an ensemble of N identically prepared
copies of the unknown states, and they require one to
perform a large number of different measurements, making
the traditional FQST impractical in high dimensions. One
remaining challenge in quantum state tomography is the
limited speed and efficiency of data acquisition for HD
quantum states. To improve the characterization efficiency,
two bases [31] and asymptotical locking tomography [32]
were presented to obtain all the information about the
bipartite d-dimensional entangled states using few mea-
surements, less than 2d2 only. The machine learning
method was demonstrated to compress HD data into
low-dimensional representations and reduce the experi-
mental burden of the FQST [33]. Compressive sensing
technology was implemented for the tomography of HD
pure states, which still increases the required measurements
with the entanglement dimension [34,35]. In the direct
tomography of HD quantum states reported recently, the
data acquisition time is independent of the dimension,
while the use of polarization-resolving cameras limits
applications [36]. The interferometric method was reported
to reduce the measurement complexity for characterizing
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the density matrix, which theoretically requires (d − 1)
measurements for reconstructing the pure states of
d-dimensional qudits [37]. Direct measurement of the
density matrix in the HD orbital angular momentum
(OAM) basis was also reported, via scanning bucket
detectors for data acquisition [38,39]. An approach for
multiphoton states was also demonstrated by recovering
structured quantum states from a single observable in a
single experimental setup [40].
Here we present a scan-free tomography strategy for

reconstructing the HD OAM entangled states using an
intensified charge coupled device (ICCD) camera. In our
scan-free tomography, only two measurements are required
independent of dimension for two-photon entanglement.
Taking the Laguerre-Gaussian (LG) mode as an example,
we theoretically and experimentally show the characteri-
zation of two-photon OAM entangled states with high
fidelity. Our strategy aims towards quantum information,
and quantum communication can be generalized to other
spatial modes carrying OAM, such as Bessel-Gaussian
(BG) modes. Our certification method can also be used for
mixed and multiphoton OAM entanglement, which is
useful for the foundation of quantum mechanics.
The generated photon pairs are entangled in their OAM

degree of freedom in (2dþ 1) dimensions as

jψi ¼
Xd

l¼−d
αl expðjϕlÞjlisj − lii; ð1Þ

where jlis or j − lii represents the single-photon OAM state
with quantum number l (i.e., topological charge), for the
signal (s) or idler (i) photons. Here, αl ≥ 0 and ϕl ∈ ½0; 2πÞ
are the amplitude and phase for the state jlisj − lii.
Additionally, αl is the normalized coefficient, and α2l is
proportional to the probability Pl;−l of detecting the signal
photons in state jlis and the idler photons in state j − lii.
Here, jli represents a zero-radial-index LG mode with
a topological charge of l, which can construct a set
of orthogonal and complete eigenmodes, where jli ∝
ElðrÞ expðjlφÞ in the cylindrical coordinates ðr;φ; zÞ car-
ries the OAM of lℏ per photon and ElðrÞ is the amplitude
function at the beam waist (see Ref. [41] for details).
The traditional FQST for the OAM entanglement uses a

spatial light modulator (SLM), together with a single-mode
fiber (SMF), which acts as the mode filter to implement the
projection measurements of the spatial states of photons by
scanning the bucket detector. For a (2dþ 1)-dimensional
entanglement, 2ð2dþ 1Þ computer-generated holograms
allow about ð2dþ 1Þ4 projection measurements on the
selected bases to determine the density matrix [39].
The first task is to determine how to dramatically reduce
the measurements. Unlike the traditional FQST, which
needs to implement a large number of projection measure-
ments using one-by-one single state scanning, our method
requires only two projection measurements, using a pixel

camera to capture the spatial intensity patterns rather than
using a bucket detector to collect the total intensity only.
Here, we present the two-measurement tomography of

HDOAM entanglement (see Ref. [41] for a general theory).
As the principle schematic of our two-measurement tomo-
graphy in Fig. 1(a), the entangled photon pairs (signal and
idler photons) are generated by the spontaneous parametric
down-conversion (SPDC) in a nonlinear crystal; the SLM
can place the signal photons into two sets of OAM
superposition states (j _Ψsi and jΨ̈si) instead of one-by-
one single state scanning to implement two projection
measurements. Then, the idler photons will be reduced to
two sets of correlated OAM superposition states (j _Ψii and
jΨ̈ii); the signal photons are coupled into a SMF and
detected by an avalanche photon diode (APD), and the
APD detector triggers a pixel intensified charge coupled

FIG. 1. Concept of two-measurement tomography and simu-
lated tomographic reconstruction of a three-dimensional OAM
entangled state. (a) Principle schematic of two-measurement
tomography for measuring the OAM entangled states created
by the SPDC process. Signal photons are measured in the
superposition OAM basis with the SLM loaded in a suitable
holography. The signal photons enter the single photon detector,
and its electrical signal is used to trigger the ICCD camera. The
spatial patterns of the reduced OAM superposition states of the
idler photons are captured by the triggered ICCD camera. (b) [(c)]
Simulated intensity pattern of the reduced OAM state of the idler
photons under the projection basis j _Ψsi ¼ ðj0is þ j1isÞ=

ffiffiffi
2

p

[jΨ̈si ¼ ðj0is þ j − 1isÞ=
ffiffiffi
2

p
] of the signal photons. (d) [(e)]

Simulated real [imaginary] part of the reconstructed density
matrix for the preset three-dimensional OAM entangled target
state shown in Eq. (2).
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device (ICCD) camera to capture two images of the
spatial coincidence distribution (i.e., the intensity distribu-
tion patterns of the idler photons) in the two projection
measurements. It is of great importance that the
two projection measurements have a shared single state
such as j0is, which builds a link between the two
measurements.
To prove the validity of our method, we first carry out a

simulation. We select a three-dimensional OAM entangled
state jψi as the simulation target state (see Ref. [41] for
details),

jψi ¼ ½4 expðj7π=4Þj − 1isj1ii þ 5j0isj0ii
þ 6 expðjπ=4Þj1isj − 1ii�=

ffiffiffiffiffi
77

p
: ð2Þ

In our tomography, the coincidence patterns depend
on the projection basis of the signal photons.
Throughout this Letter, all the parameters related to the
first and second measurements are defined by symbols
with superjacent single dots and double dots, respectively.
Under two projection bases, j _Ψsi ¼ ðj0is þ j1isÞ=

ffiffiffi
2

p
and

jΨ̈si ¼ ðj0is þ j − 1isÞ=
ffiffiffi
2

p
, we do not know the forms of

the reduced states of the idler photons in practice, but we
can experimentally capture the two coincidence images of
the idler photons using the ICCD. If we measure the two
coincidence images experimentally, both will be used to
reconstruct the target entangled state and density matrix.
We now give the simulation results of two spatial coinci-
dence images of the idler photons (see Ref. [41] for details),
as shown in Figs. 1(b) and 1(c). The important task is to
obtain the amplitudes fαlg and phases fϕlg from the two
simulated coincidence images in Figs. 1(b) and 1(c) to
reconstruct the density matrix of the target state jψi in
Eq. (2). Following our algorithm (see Ref. [41] for details),
due to the interference between the reduced superposition
states of the idler photons, the two images in Figs. 1(b)
and 1(c), as a function of the radial coordinate Rp and the
azimuthal coordinate φ, can be written as

_IðRp;φÞ ¼ _κ½α20E2
0ðRpÞ þ α21E

2
−1ðRpÞ

þ 2α0α1E0ðRpÞE−1ðRpÞ cosðφ − ϕ1Þ�; ð3aÞ

̈IðRp;φÞ ¼ κ̈½α20E2
0ðRpÞ þ α2−1E

2
1ðRpÞ

þ 2α0α−1E0ðRpÞE1ðRpÞ cosðφþ ϕ−1Þ�; ð3bÞ

where _κ and κ̈ are the proportional factors, which domi-
nantly depend on by the detection efficiency of the detector.
To solve the amplitudes fαlg and phases fϕlg, we need to
choose at least two circles with different radii (R1 and R2)
as shown in Figs. 1(b) and 1(c). In fact, the intensity
distribution along each circle in Figs. 1(b) and 1(c) can be
expressed as the sum of a series of periodic (cosine)
functions with different angular frequencies. For the

three-dimensional entanglement, the angular frequencies
should be 0 and 1; then they can be written as

_IðRpÞ ¼ _bp0 þ _bp1 cosðφþ _βp1 Þ; ð4aÞ
̈IðRpÞ ¼ b̈p0 þ b̈p1 cosðφþ β̈p1 Þ: ð4bÞ

The parameters, _bp0 , _b
p
1 , _β

p
1 , b̈

p
0 , b̈

p
1 , and β̈

p
1 can be obtained

by using a discrete Fourier transform (DFT). Comparing the
parameters in Eqs. (3a) and (3b) with Eqs. (4a) and (4b),
we can solve the amplitudes fαlg and phases fϕlg.
The simulation results give fα−1 ¼ 0.460; α0 ¼ 0.560;
α1 ¼ 0.690g and fϕ−1 ¼ 5.500;ϕ0 ¼ 0;ϕ1 ¼ 0.795g (see
Ref. [41] for details), which are close to the pre-
set values of fα−1 ¼ 0.456;α0 ¼ 0.570;α1 ¼ 0.684g and
fϕ−1 ¼ 5.498;ϕ0 ¼ 0;ϕ1 ¼ 0.785g. If we choose more
circles in Figs. 1(b) and 1(c), the reconstructed density
matrix will have a more accurate fidelity using the mean
method. When choosing 50 equal-interval concentric circles
from either of the two images, the real and imaginary parts of
the reconstructed density matrix of the target state jψi are
shown in Figs. 1(d) and 1(e), the reconstructed state has a
fidelity higher than 0.99. Therefore, our two-measurement
tomography should be valid theoretically for characterizing
the HD OAM entanglement.
We now implement experiments to test our tomography

method (see Ref. [41] for details). We want to experi-
mentally generate a two-qutrit OAM entangled target state
jψi ¼ 0.50j − 1isj1ii þ 0.71j0isj0ii þ 0.50j1isj − 1ii by
the SPDC in a type-II periodically poled potassium titanyl
phosphate (PPKTP). We first characterize the quality of the
generated state by the traditional FQST [24–26] and
obtain the reconstructed state of jψi ¼ 0.51j − 1isj1iiþ
0.69j0isj0ii þ 0.51j1isj − 1ii. The experimentally gener-
ated state has a fidelity beyond 0.99 with respect to the
target state, implying that the quality of the OAM entangled
state we generated is very high. We now experimentally
explore our two-measurement tomography method. The
output facet of the PPKTP crystal is imaged onto the ICCD
plane. We use two superposition states, j _Ψsi ¼ ðj0is þ
j1isÞ=

ffiffiffi
2

p
and jΨ̈si ¼ ðj0is þ j − 1isÞ=

ffiffiffi
2

p
, as the projec-

tion bases of the signal photons. Two-measurement images
(for the reduced idler photons) captured by the ICCD
camera are shown in Figs. 2(a) and 2(b). Compared to the
scanning of the bucket detector, direct imaging with the
ICCD significantly shortens the time required for meas-
urement. Hence, the real-time imaging with the ICCD has
an improvement of many orders of magnitude both spa-
tially and temporally, opening possible novel applications
in quantum information and metrology. We set the intensi-
fier gate width at 10 ns as the coincidence gate time to
ensure that only the correlated idler photon events are
registered. We adjust the exposure time to be 15 s to get
enough of the detected idler photons for each of the two-
measurement images. We extract the measured data on two
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circles with radii of 0.23 mm and 0.43 mm from either of
the two-measurement images in Figs. 2(a) and 2(b). By
using the fitting red and blue curves in Figs. 2(c) and 2(d)
of the data and our method (see Ref. [41] for details), we
can reconstruct the target state. When choosing 50 equal-
interval concentric circles from either of the two images, as
shown in Figs. 2(e) and 2(f), the real and imaginary parts of
the density matrix reconstructed with our two-measurement
tomography show that the reconstructed state has a fidelity
of F ¼ 0.970� 0.003 (see Ref. [41] for details). We also
explore the dependence of the fidelity of the reconstructed
density matrix on the number of circles selected (N) (see
Ref. [41] for details).
We also experimentally prepare a symmetric OAM

entangled state jψi ¼ ðj − 1isj1ii þ j1isj − 1iiÞ=
ffiffiffi
2

p
as

another target state to confirm our method again. For such
a symmetric state, we should choose the asymmetric states
j _Ψsi¼ð2j−1is− j1isÞ=

ffiffiffi
5

p
and jΨ̈si¼ðj−1isþ2j1isÞ=

ffiffiffi
5

p
as the projection bases of the signal photons. Under the two
projection bases, we capture experimentally the two
coincidence spatial images of the idler photons by the
ICCD in Figs. 3(a) and 3(b). Based on our method [41],

we also choose 50 equal-interval concentric circles from
each of the two images in Figs. 3(a) and 3(b) to recon-
struct the target state. We obtain the reconstructed state of
jψi ¼ 0.71 expð−0.086jÞj − 1isj1ii þ 0.71j1isj − 1ii with
a fidelity of F ¼ 0.990� 0.002 in Figs. 3(c) and 3(d).
In the above, we verified in both simulation and experi-

ment that our two-measurement tomography is valid and
practical for HD spatial mode entanglement. However, we
realized experimentally the characterization of three-
dimensional OAM entanglement, which is only limited
by the nonuniform distribution of OAMs in the SPDC
process because the photons with higher OAMs become
very weak. Creating the uniform HD OAM entanglement
source will still be a huge challenge in the future. Here, we
also simulate the characterization of 11-dimensional OAM
entanglement based on our method (see Ref. [41] for
details). The 11-dimensional OAM entangled target state
is preset. Under the projection bases of the signal photons,
we simulate the coincidence images of the idler photons for
two measurements. Although the simulated amplitude fαlg
and phases fϕlg ðl ¼ 0;�1;…;�5Þ from six concentric
circles only in each of the two images have some errors
from the preset values (see Tables I and II in [41]), when we
choose 50 equal-interval concentric circles in each of the
two simulated coincidence images to obtain more values
of the amplitudes and phases, then their mean values are
used to reconstruct the density matrix with a fidelity of
F ¼ 0.990� 0.001 (see Ref. [41] for details).

(b)

(e) (f)

(c)(a)

(d)

FIG. 2. Experimental results of a two-qutrit OAM entangled
state. A two-qutrit OAM entangled state jψi ¼ 0.50j − 1isj1ii þ
0.71j0isj0ii þ 0.50j1isj − 1ii is the target state we want to
experimentally generate by the SPDC process in a type-II ppKTP.
(a) [(b)] Image measured by the ICCD in the first [second]
measurement, under the projection basis j _Ψsi¼ðj0isþj1isÞ=

ffiffiffi
2

p

[jΨ̈si ¼ ðj0is þ j − 1isÞ=
ffiffiffi
2

p
] for the signal photons. (c) [(d)]

Measured data and fitting curves of two concentric circles (with
radii of R1 and R2) from the image in (a) [(b)]. (e) [(f)] Real
[imaginary] part of the reconstructed density index by choosing
50 equal-interval concentric circles (the radius has a range from
0.13 to 1.235 mm) from each of the two images.

(a) (b)

(c) (d)

1

0

1

0

0.8

0.4

0

Im(�)Re(�)

|1,-1
|-1,1-1,1|

1,-1|

0.2

0

-0.2

|1,-1
|-1,1-1,1|

1,-1|

First measurement Second measurement

1 mm 1 mm

FIG. 3. Experimental results of a symmetric OAM entangled
state. A symmetric OAM entangled state jψi ¼ ðj − 1isj1ii þ
j1isj − 1iiÞ=

ffiffiffi
2

p
is experimentally generated as the target state by

using the SPDC in a type-II ppKTP. (a) [(b)] Image measured by
the ICCD in the first [second] measurement, under the projection
basis j _Ψi ¼ ð2j − 1is − j1isÞ=

ffiffiffi
5

p
(jΨ̈i ¼ ðj − 1is þ 2j1isÞ=

ffiffiffi
5

p
)

for the signal photons. (c) [(d)] Real [imaginary] part of the
reconstructed density index by choosing 50 equal-interval con-
centric circles (the radius has a range from 0.26 to 1.30 mm) from
each of two images in (a) and (b).
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In general, only two measurements are needed for the
characterization of the HD OAM entanglement due to the
symmetric distribution of OAMs of photons in the SPDC
process. In the recently demonstrated approaches [47–49],
a superposition of OAM modes is imprinted by holograms
into the pump beam, which translates via down-conversion
into the asymmetric entangled states of two photons. For
such kinds of states, one measurement is enough. In
addition, the mixed entangled state has wide applications
in both fundamental quantum mechanics and quantum
information processing. Due to decoherence and dissipa-
tion, practical states are normally less entangled or partially
mixed [50,51]. Obviously, quantifying the entanglement of
mixed states is more complex than that of the pure ones,
and it also becomes a challenge in many quantum tech-
nology applications. Our method is also valid for the mixed
OAM entangled state (see Ref. [41] for details). As an
example, we also used our two-measurement tomography
to reconstruct the three-dimensional OAM mixed entan-
gled state and the fidelity F ¼ 0.990� 0.002 (Fig. 4).
Compared with the previous interferometric method, which
is used to characterize the density matrix in the position
basis, our method does not need additional interferometric
schemes (Mach-Zehnder interferometry [36]), and it
becomes more flexible and stable.

Conclusion.—We have proposed the practical method to
characterize the HD OAM entanglement. Compared with
the traditional FQST, our tomography method uses two-
dimensional imaging detection instead of a scanning bucket
detector. Besides its conceptual difference, our approach
has another core strength: only two measurements are
required to reconstruct the density matrix of the two-photon
OAM entangled states. We confirmed the feasibility of our
method by experimentally implementing the tomography
of the two-photon three-dimensional OAM entangled
states. Our idea can be extended to different families of
spatial modes, such as BG modes carrying OAM [52,53]
and Hermite-Gaussian modes without OAM. However, for
any form of spatial mode entanglement, to detect the
entanglement, the projection bases must be the correspond-
ing eigenmodes and/or their superposition. Our method
also has another very appealing feature: it is valid for
mixed and multiphoton HD OAM entanglement (see
Ref. [41] for details). We should emphasize that for an
n-photon d-dimensional entangled state, our protocol needs
2ðdn−1 − 1Þ=ðd − 1Þ projection measurements at most,
rather than two measurements, but the measurements are
still much lower than other methods. Our scheme for direct
tomography of the HD entanglement can be readily utilized
not only in various applications such as superdense coding,
HD quantum teleportation and quantum process tomogra-
phy, but also for free-space communication [54] or even
fiber-based [55] systems. The data acquisition time is
independent of the entanglement dimension because our
method needs two measurements for the two-photon
entanglement, and the maximum dimension allowed by
our protocol is only limited by the pixel count of the ICCD
camera.
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