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Classical first-passage times under restart are used in a wide variety of models, yet the quantum version
of the problem still misses key concepts. We study the quantum hitting time with restart using a monitored
quantum walk. The restart strategy eliminates the problem of dark states, i.e., cases where the particle
evades detection, while maintaining the ballistic propagation which is important for a fast search. We find
profound effects of quantum oscillations on the restart problem, namely, a type of instability of the mean
detection time, and optimal restart times that form staircases, with sudden drops as the rate of sampling is
modified. In the absence of restart and in the Zeno limit, the detection of the walker is not possible, and we
examine how restart overcomes this well-known problem, showing that the optimal restart time becomes
insensitive to the sampling period.
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Introduction.—First-passage processes are ubiquitous in
practically all fields of science. Probably the simplest
approach uses a random walker in search of a target, as
found for diffusion-controlled reactions [1,2]. This
common method does not demand an input of energy,
however, it is nonefficient as the random walker resamples
previously visited locations, and further, the walker,
according to the laws of chance, may stray far from the
target. In the context of biochemical reactions, nature found
a way to overcome this problem, and that is with a restart
strategy [3–6]. It turns out that, sometimes, if the search
does not find its target, it is better to give up and start the
process anew. Restarts were employed to accelerate algo-
rithms [7,8], and then, considered in generality in the
context of stochastic processes [9,10], rapidly encompass-
ing various contexts including classical search theory,
chemical physics, and population dynamics, etc. In this
well-studied field, the basic questions are what are the
nonequilibrium steady states emerging from restart, and
what is the optimal time to restart [7–35]?
As the counterpart of classical random walks, quantum

walks are widely applied in many different fields, ranging
from transport in waveguides to ultracold atoms to light-
harvesting dynamics in biochemistry [36–40], and there-
fore, rather naturally, a few previous works addressed the
restart problem with an underlying quantum dynamics
[41–47]. At the same time, quantum search and transport,
in the absence of restarts, has an antagonist: the dark
subspace [48,49] caused by destructive interference. This
problem works against the quantum advantage of ballistic
propagation [39], which can be useful for search. This
means that, for quantum walks with dark states, the
detection probability, defined below, is less than unity
even for small systems. Overcoming this hurdle is impor-
tant for efficient quantum search, and restarts are a powerful

approach for that aim. However, one may not introduce
restarts blindly, as the goal is not merely to get rid of the
dark states, but rather to optimize the time for search. The
basic questions are the following. How to choose the time
for the restart so that the quantum search time is mini-
mized? Will the ballistic superiority of the quantum search
be retained when restart is added? What are the funda-
mental differences between quantum and classical restarts?
To characterize the time for search, we utilize the concept
of quantum hitting time, or the first-detected-passage time
(FDPT). The model we consider is a tight-binding quantum
walk with repeated monitoring, which was studied exten-
sively in the absence of restart [49–58]. Such repeated
monitoring or measurements have been implemented, for
example, on IBM quantum computers [59]. Our Letter
paves the way for the speedup of quantum hitting times, on
quantum computers, which, as mentioned, is particularly
important in the presence of dark states.
The benchmark model for classical restart is a diffusive

particle whose position is reset at some random time tr
[9,10,19]. In this case, the mean time the particle reaches a
fixed target is finite (without restart, it diverges in an
unbounded domain). Further, the mean time to reach a
target has a distinct minimum and, thus, optimal value, as a
function of tr [9–11,16,60]. In contrast, using quantum
walks, we will find several minima, instead of a unique
minimum, and the mean FDPT can exhibit a bistable
behavior where the hitting time is optimal for a pair of
values of tr.
Consider a classical random walk on the integers, and let

Pclðx; tÞ be the probability of finding the particle on x at
time t. The master equation is [1]

∂tPclðx;tÞ¼ γ½Pclðxþ1;tÞþPclðx−1;tÞ−2Pclðx;tÞ�: ð1Þ
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γ is the hopping rate. Now, consider the tight-binding
quantum walk, the wave-function is jψðtÞi¼P∞

−∞ϕðx;tÞjxi
and using the Schrödinger equation

−i∂tϕðx; tÞ ¼ γ½ϕðxþ 1; tÞ þ ϕðx − 1; tÞ − 2ϕðx; tÞ�; ð2Þ

with ℏ ¼ 1. In both models, the walker hops to nearest
neighbors and the solutions for starting from the origin
jxi ¼ j0i are ϕðx; tÞ ¼ ixe−i2γtJxð2γtÞ [54], Pclðx; tÞ ¼
i−xe−2γtJxði2γtÞ [1], where JαðzÞ is the Bessel function
of the first kind. Replacing t with it one may switch from
Pclðx; tÞ to ϕðx; tÞ. Still, the packet spreadings are different:
the classical packet spreads diffusively and approaches a
Gaussian for large times, while the quantum walk prop-
agates ballistically [39].
Quantum systems generally lack precise trajectories.

Hence, to define first-hitting time, we add repeated mon-
itoring at jδi, with the goal to detect the particle at this state.
For that, an observer makes repeated measurements at
times τ; 2τ;…. Each measurement is a projection, namely,
either the particle is found at jδi (yes), or it is not (no), see
Fig. 1. This yields a string of measurements, no, no,…, and
in the nth attempt, a yes [50,52,54]. The process of search is
then completed. Clearly, the first time we get a click yes is
random, and nτ is defined as the hitting time or the FDPT.
Note that, classically, the continuous sampling of the
process τ → 0 makes sense, but with the quantum frame-
work, this leads to a freeze of the dynamics and to null
detection due to the quantum Zeno effect [61].

Let Fn be the probability of detecting the walker in the
nth attempt for the first time without restart. Classical and
quantum renewal equations were extensively used to obtain
these basic probabilities [1,54]. The quantum Fn’s are
presented in Table I, see, also, details below and the
Supplemental Material (SM) [62]. To start, we plot, in
Fig. 2(a), the detection probability up to time nτ, i.e.,
PdetðnÞ ¼

P
n
n0¼1

Fn0 still without restart (with γ ¼ 1). We
see that, at short times nτ, the quantum walker is perform-
ing better, as it has the advantage of ballistic propagation.
However, at large times, the classical walker wins in the
sense that it is eventually detected with probability one
while the quantum system falls far from this limit [55].
To improve the hitting time, we use the sharp-restart

strategy [7,16], leaving other cases to the SM [62], see,
also, further discussion at the end of the Letter. Every r
detection attempts we restart the search process, as Fig. 1
depicts. With this approach, we find both simple and novel
results, we start with the former. Using the simple example
in Fig. 2(a), if we choose r to be slightly larger than the time
it takes the quantum PdetðnÞ to saturate without restart, we
observe two effects presented in Fig. 2(b). First, the
quantum detection is now guaranteed: with probability
one, we detect the walker in the long time limit (the same

TABLE I. Fn for the model of an infinite line, δ ¼ 0.

n Fn

1 jJ0ð2γτÞj2
2 jJ0ð4γτÞ − J20ð2γτÞj2
3 jJ30ð2γτÞ − 2J0ð4γτÞJ0ð2γτÞ þ J0ð6γτÞj2
4 j − J40ð2γτÞ þ 3J0ð4γτÞJ20ð2γτÞ − 2J0ð6γτÞJ0ð2γτÞ

−J20ð4γτÞ þ J0ð8γτÞj2

(a) (b)

FIG. 2. (a) Detection probability PdetðnÞ for a classical or
quantum walker on an infinite 1D lattice. The quantum total
detection probability Pdet ¼

P∞
n¼1 Fn ≈ 0.1, although it grows

rapidly at the beginning. The figure illustrated that for short times,
the quantum ballistic spreading speeds up the search (compared
to the classical counterpart), but at long times, the quantum
detection without restart performs poorly. (b) Restarted quantum
walk performs by far better than the corresponding classical walk,
when r ¼ 35 for both models (classical 1). The quantum restart
process also performs better if compared with the optimally
chosen classical restart (classical 2 when r ¼ 191). Here,
τ ¼ 0.25, δ ¼ 10.

(a)

(b)

FIG. 1. The measurement protocol under sharp restart in time
(a) and space (b) representation. The system is initialized at state
j0i [see, also, the dashed needle in (b)] and the unitary evolution
ÛðτÞ is repeatedly interrupted by projective measurements
defined with D̂ ¼ jδihδj at times τ; 2τ; 3τ;…. If the state is
detected, we are done, if not, at the rth failure of detection, the
system is brought back to j0i, i.e., a restart is performed every r
steps. The red curve in (b) represents the wave packet, namely, the
solution of Eq. (2), that spreads out ballistically before the
particle is detected or reset.
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for the classical cases). Second, the quantum walker
performs much better than the classical one (classical 1),
in the sense of a much larger quantum PdetðnÞ compared
with the classical case. If r is chosen as the optimal for the
classical walk to make a fair comparison, the quantum
restart process still performs better than the classical one
(classical 2). This is obviously due to the quantum ballistic
propagation.
To gain insight, we will focus on the expected

FDPT under restart, denoted by htfir. By definition
htfir ¼ τhnfir ¼ τðrhRi þ hñiÞ, where nf is the number
of measurements until first hitting, R is the number of
restarts before final detection. Hence, 0 ≤ R ≤ ∞
and 1 ≤ ñ ≤ r. The joint distribution of R and ñ is
PrrðR; ñÞ ¼ ½1 − PdetðrÞ�RFñ, with the normalizationP∞

R¼0

P
r
ñ¼1 PrrðR; ñÞ ¼ 1. Using the restart time

tr ¼ rτ, we obtain [7,30,63]

htfir ¼
1 − PdetðrÞ
PdetðrÞ

tr|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
hRitr

þ
Xr

ñ¼1

ðñτÞFñ

PdetðrÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
τhñi

; ð3Þ

(seeSM[62] for detailed derivation). In turn, theprobabilities
Fn were studied previously in Refs. [54,55] and, as men-
tioned for small n, are presented in Table I (for δ ¼ 0). The
Fn’s are used to evaluate observables of interest numerically,
though clearly as a stand-alone quantity, they do not provide
much insight. Now, we focus on the optimization for htfir in
small and large τ limits where applicable approximations
allow analytical solutions.
Zeno limit.—Now, we consider the case where τ is small,

and hence, the measurements are frequent. Let gðtfÞdtf be
the probability of tf, in the absence of restart, to be in the
interval ½tf; tf þ dtf�. In this limit, the process can be
modeled with a continuous time formalism, which is a great
simplification [52,57]. This means that we can treat gðtfÞ ¼P

n¼1 Fnδðtf − nτÞ as a smooth function. The main tool

here is a non-Hermitian Schrödinger equation, i _jΨi ¼
½H − iℏð2=τÞjδihδj�jΨi, and SðtÞ ¼ hΨðtÞjΨðtÞi is the
probability that the walker “survived” from detection until
time t, and gðtfÞ ¼ −dSðtÞ=dtjt¼tf . With this approach and
H defined in Eq. (2), one finds that, without restart [56,64],

gðtfÞ ¼ τδ2
J2δð2tfÞ

t2f
: ð4Þ

As τ → 0, this expression exhibits the well-known Zeno
physics, i.e., frequent measurement prohibits state transi-
tions [61]. To remedy this problem we use restart.
Using Eq. (3) in the continuous limit yields

htfir ∼ ½ðδ2τI1Þ−1 − 1�tr þ I2=I1; ð5Þ

where I1 ¼
R tr
0 t−2f J2δð2tfÞdtf, I2 ¼

R tr
0 t−1f J2δð2tfÞdtf (see

SM [62] for explicit solutions). The theory Eq. (5) nicely

matches numerical results obtained from the repeated-
measurement model (see SM [62]). In Fig. 3, we present
htfir as a function of tr, on top of which the global
minimum of htfir (red dots) is provided via minimization
of Eq. (5), which remarkably is τ (δ) independent (depen-
dent), respectively. Soon, we will explain this intriguing
feature.
We also see, in Fig. 3, that for too small or too large tr,

the mean hitting time diverges as expected. Specifically,

using Eq. (5), for δ ≠ 0, htfir∼ ð2δ−1ÞΓ2ð1þδÞt2ð1−δÞr =τδ2

when tr → 0, and htfir ∼ ½πð4δ2 − 1Þ=8τδ2 − 1�tr þ
ð4δ2 − 1Þπ=16δ as tr → ∞. Hence, for large tr and large
δ, htfir is linear in tr with a δ-independent slope, which is
vastly different from the classical behavior, as the latter is
proportional to δ [9].
The detection time under restart features oscillations,

clearly visible in Fig. 3. These oscillations are, in
turn, related to the phase acquired in gðtfÞ ∼
ðδ2τ=πÞt−3f cos2ð2tf − πδ=2 − π=4Þ in large tf limit of
Eq. (4). The quantum oscillations presented in Fig. 3 imply
thatwe have, in general,multiple extrema for htfir, instead of
a unique minimum usually found for classical restarts [9–
11,16,60], see, also, SM [62] where we present classical
examples. Using Eq. (5), the extrema are solutions to

τξ − τ2
�
ξ

Z
textr

0

g̃ðtÞdtþ
Z

textr

0

tg̃ðtÞdt
�
¼ 0; ð6Þ

(a)

(b)

FIG. 3. htfir vs restart time tr for different δ and τ, obtained
using the repeated-measurement model. The red dots are the
minimum calculated using the non-Hermitian approximation
Eq. (5). Notice the oscillations which are a quantum feature.
We used δ ¼ 10 (a), and τ ¼ 0.01 (b). The optimal restart time is
τ independent (a) while exhibiting a nearly linear dependence on
the distance δ (b).
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where g̃ðtÞ ¼ gðtÞ=τ, ξ ¼ R textr
0 g̃ðtÞdt − textr g̃ðtextr Þ, and the

superscript ext means extremum. Since τ is small, we may
neglect the τ2 terms and find a transcendental equation for the
extrema, i.e., ξ ¼ 0 or

Z
textr

0

J2δð2tÞ
t2

dt ¼ J2δð2textr Þ
textr

; ð7Þ

(see SM [62] for an explicit solution to the integral). Hence,
the extrema are independent of τ, as demonstrated in Fig. 3.
Note that a similar technique to derive the optimum is also
used from classicalwalks [19, Eq. (7)]. Remarkably, since, as
mentioned after Eq. (2), jJδð2tÞj2 is the probability of finding
the walker at jδi, in the absence of measurements, the
extremal restart times are actually connected to the solution
of the Schrödinger equation jϕðδ; tÞj2. The transcendental
Eq. (7) indicates that the number of extrema increases as δ
grows. Unlike the classical problem, the global minimum t�r
increases roughly linearly with the distance δ and exhibits
sudden jumps at special δ’s due to the multiple minima (see
SM [62]).
Large τ limit.—Also, when the measurement period τ is

large, we find interesting effects. In this case, and without
restart, the probability of FDPT Fn is given by the wave
function of the system in the absence of measurements. The
origin of this effect is that sparse measurements do not
modify the Hermitian dynamics too much. Specifically,
using the asymptotics of the Bessel function [54,65]

FnðτÞ ¼ jh0jψðt ¼ nτÞij2 ∼ 1

nπτ
cos2

�
2nτ −

π

4

�
: ð8Þ

Here, we have focused on the case called the return
problem when δ ¼ 0, partly due to space limitation. In
Fig. 4, we plot r� ¼ t�r=τ vs τ using a numerically exact
calculation. Clearly, unlike the Zeno case, now τ is an
important parameter. Remarkably, as shown in Fig. 4, r�
exhibits a periodic sequence of staircases, which are now
analyzed.
Beyond the fact we get for the optimum r� periodiclike

behavior, there are plunges for certain critical τ’s in Fig. 4.
This means that the optimal restart step jumps from r� ¼ 6
to r� ¼ 1, when τ is only slightly modified. This indicates
the existence of instabilities in the system, related to
quantum oscillations. To understand these effects, we used
Eq. (8). First, notice that choosing 2τ as a multiple of π, we
have Fn ∼ 1=ð2nπτÞ. Since Fn is monotonically decaying
with n, it is not difficult to realize that the optimal strategy
to restart is to choose r� ¼ 1, namely, immediate restart
(this holds in the classical counterpart since the first-
passage probability decays as t−3=2 [1]). This explains
the periodicity presented in Fig. 4. As we vary τ, then close
to τ ¼ kπ=2 with k a positive integer, the best strategy is to
restart as fast as possible, i.e., r� ¼ 1.

What will happen when we increase τ? Considering the
mean hnfir ¼ htfir=τ, note that hnfi1 ¼ 1=F1, and impor-
tantly, when τ is large such that Fn ≪ 1, we have
hnfi2 ∼ 2=ðF1 þ F2Þ, hnfi3 ∼ 3=ðF1 þ F2 þ F3Þ, etc. Let
τ ¼ kπ=2þ ϵ and 0 < ϵ < π=2. As mentioned for ϵ ¼ 0,
r� ¼ 1. When the condition hnfi1 ¼ hnfi2 holds, there is a
transition from r� ¼ 1 to r� ¼ 2 taking place when ϵ1→2 ¼
0.850 (see derivation in SM [62]). Further transitions in r�
from r to rþ 1 take place whenever

rFrþ1 ¼
Xr
n¼1

Fn: ð9Þ

Importantly, this formula admits a finite number of sol-
utions, which based on physical intuition, is expected since
r� cannot be too large. Using Eqs. (8), (9) we find those
ϵj→jþ1 on which the steplike jumps take place, with j
increasing from 1 to 5,

fϵj→jþ1g ¼ f0.850; 1.081; 1.204; 1.280; 1.332g;
ϵpl ¼ 1.353: ð10Þ

The subscript pl means plunge, i.e., the jump from r� ¼ 6
to r� ¼ 1. Thus, as shown in Fig. 4, we have a complete
theory of the staircase structure. Further, using the small-
ness of Fn, we have, at transition points, hnfir� ∼ 1=Fr�þ1.

(a)

(b)

FIG. 4. (a) hnfir� vs τ. hnfir� ∼ 1=Fr�þ1 is used to calculate the
theoretical optima at transition points (black crosses), around
which nonsmoothness is witnessed. (b) The optimal restart step
r� vs τ. We see the novel staircase structure in large τ, however,
this type of behavior appears in the full range of τ (see SM [62]).
The black crosses represent the theoretical transition τ’s Eq. (10).
For classical restart, r� ¼ 1. The insets present hnfir vs r in the
vicinity of the plunge τ (¼ 100π þ 1.353). There are two minima
competing with each other, and a small change of τ (i.e.,
Δτ ¼ 0.03) results in different optima. On the left inset,
r� ¼ 6, and on the right, r� ¼ 1. We used δ ¼ 0.
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To better understand the “plunge” namely the transition
r� ¼ 6 → r� ¼ 1 found for ϵpl, hnfir close to a critical
value of τ is plotted in the insets of Fig. 4. There appear two
minima of hnfir. The first is at r� ¼ 6 and the second at
r� ¼ 1. A slight change of τ leads to the global minimum
switching from one value to the other. At the exact
transition value, the two minima are identical. Thus, the
system exhibits an instability in the sense that small
changes of τ create a large difference in r�.
Discussion.—Employing the sharp-restart strategy, we

expedite the hitting time of a tight-binding quantum walk,
and now, we emphasize three points. First, the expected
hitting time under restart exhibits an oscillatory behavior
unlike the classical case, rendering the appearance of
several extrema. This effect is general and not limited to
the Zeno limit, as we will show in a future publication.
What is unique to this limit, is that the optimal restart is τ
independent, and that one may obtain a transcendental
equation which is a by far simpler tool if compared with an
exact though numerical evaluation of the problem. Second,
previously, it was shown that sharp restart has a certain
advantage of attaining the lowest mean passage time among
all restart strategies [7,16]. It is also noteworthy that the
quantum feature of oscillations is wiped out with Poisson or
geometric restarts (see details in SM [62]), thus, sharp
restart should be used in the quantum domain. Third, in
sparse measurement limit, i.e., large τ, the optimal restart
step r� exhibits a periodical staircase structure with
instabilities, i.e., plunges in the optimal restart time
(Fig. 4). We expect these instabilities to be generic for a
wide range of parameter changes, as their cause is the
oscillatory nature of the detection time statistics. These
plunges and instabilities are clearly a signature of the
quantum dynamics, and as far as we know, are new in the
general framework of restart theory.
Our theory can be implemented in laboratories, as

restarts are routinely used, for the aim of repeating
experimental protocols to gain statistics of various outputs.
Probably the best way to test the theory is on quantum
computers. Here, the repeated strong measurements needed
for hitting time statistics and the restarts, i.e., the returning
of the system to its initial state, are now built in parts of the
quantum computing package. The quantum walk part is
implemented by the Jordan-Wigner transformation that
maps the walk to a qubit representation [59]. It should
be noted that system size does not have to be large, as some
of the effects we found here, like staircases and plunges
(Fig. 4), are generic to all quantum systems.
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