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We investigate the loss of adiabaticity when cooling a many-body quantum system from an initial
thermal state toward a quantum critical point. The excitation density, which quantifies the degree of
adiabaticity of the dynamics, is found to obey scaling laws in the cooling velocity as well as in the initial
and final temperatures of the cooling protocol. The scaling laws are universal, governed by the critical
exponents of the quantum phase transition. The validity of these statements is shown analytically for a
Kitaev quantum wire coupled to Markovian baths and argued to be valid under rather general conditions.
Our results establish that quantum critical properties can be probed dynamically at finite temperature,
without even varying the control parameter of the quantum phase transition.
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Critical phenomena, scaling laws, and universality are
key concepts in equilibrium physics of many-body sys-
tems. Extending these concepts to out-of-equilibrium sit-
uations is a key challenge and a vibrant research field,
aiming at consolidating our understanding of nonequili-
brium many-body systems. Efforts in this direction include
nonequilibrium phase transitions in classical stochastic
dynamics [1], transitions in trajectory space [2], quantum
phase transitions of nonequilibrium steady states [3], as
well as dynamical quantum phase transitions of various
kinds [4]. In addition to such genuine nonequilibrium
transitions, a related research direction investigates the
imprint of equilibrium phase transitions onto a system’s
nonequilibrium dynamics, which may lead to the emer-
gence of universal scaling laws out of equilibrium. Such
imprints can also be used to probe equilibrium physics by
means of nonequilibrium protocols, which may be useful in
experimental situations where equilibrium is difficult to
reach [5].
A prominent manifestation of equilibrium criticality

under nonequilibrium conditions goes under the name of
“Kibble-Zurek mechanism.” Initially proposed by Kibble
to explain domain formation in the early Universe [6], and
subsequently extended by Zurek to continuous phase
transitions in condensed matter systems [7], the Kibble-
Zurek mechanism is a consequence of critical slowing
down, i.e., the power law divergence of the relaxation time
of a many-body system in the vicinity of a continuous
phase transition. For a system in equilibrium at some initial
temperature T sufficiently far from the phase transition
temperature Tc, a gradual change of T results in adiabatic
dynamics and leaves the system equilibrated. Only when T
gets sufficiently close to Tc, critical slowing down prevents
further adiabatic evolution and causes an approximate
freeze-out in a nonequilibrium state that encodes signatures

of the equilibrium phase transition. An extension of this
thermal Kibble-Zurek mechanism to quantum phase tran-
sitions at zero temperature was proposed in later works [8].
Here, a quantum many-body system is prepared in its
ground state, whereupon a parameter in the Hamiltonian is
slowly ramped toward (and possibly across) its critical
value, producing universal signatures in the excitations
generated once critical slowing down causes adiabaticity to
breakdown; see (a) in Fig. 1. Experimental verifications, or
at least consistency checks, of Kibble-Zurek physics have
been reported in the past decade [9]. Generalizations of
Kibble-Zurek physics to open systems are known, but tend
to suffer from the presence of multiple timescales, which in
turn lead to complicated crossovers that obfuscate clean
scaling behavior [10,11].

FIG. 1. Ramping protocols in the vicinity of a quantum critical
point, with μ a control parameter in the Hamiltonian. (a) Standard
quantum Kibble-Zurek protocol at temperature T ¼ 0, involving
a linear parameter ramp from the initial value μi to the final value
μf , crossing the critical point μ ¼ μc. (b) As in (a), but at constant
positive temperature. (c) Cooling from an initial temperature
Ti > 0 to the final temperature Tf ≃ 0 with μ fixed at μc.
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In this Letter, we report clean scaling and universality
in open nonequilibrium quantum systems that are cooled
toward a quantum critical point; see (c) in Fig. 1.
Conceptually, this setting combines the temperature ramps
of Kibble’s original proposal with the exploration of
quantum critical phenomena. Even though the transition
between equilibrium quantum phases is not temperature
driven, but occurs under variation of a Hamiltonian
parameter, we show that nonequilibrium properties of a
system that is cooled toward its quantum critical point carry
an imprint of the equilibrium quantum critical exponents.
Accordingly, equilibrium critical exponents of a zero-
temperature quantum phase transition can be probed in a
nonequilibrium setting at finite temperature without even
varying the external parameter that drives the equilibrium
transition. In technical terms, we derive universal scaling
functions for the density of excess excitations that survive
the cooling process, a quantity that measures the degree to
which adiabaticity is violated. The excess excitation den-
sity scales as a power law in the cooling velocity, the initial
temperature, and also the final temperature of the cooling
protocol, with scaling exponents that depend on the
equilibrium quantum critical exponents and the spectral
density exponent of the bath.
The widespread use of cooling processes in physics and

the recent experimental progress in cooling quantum many-
body systems toward their quantum critical regime make a
case for the relevance and timeliness of identifying uni-
versal features of cooling processes. A variety of experi-
ments should be suitable for verifying our findings, in
principle, including ultracold atoms as well as solid-state
experiments at low temperatures. Understanding the defect
creation under variation of the temperature close to a
quantum critical point may also prove beneficial for the
design of adiabatic quantum computation protocols with
controlled dissipation.
Kitaev quantum wire in a thermal bath.—To observe

universality under temperature ramps in a many-body open
quantum system, we require that (i) the corresponding
closed system undergoes an equilibrium quantum phase
transition, (ii) it thermalizes under the open-system time
evolution, and (iii) the open-system dynamics is exactly
solvable, allowing us to treat large system sizes.
We consider a Kitaev chain [12] of L sites with

Hamiltonian

H ¼
XL
i¼1

�
Jðc†i ciþ1 þ c†iþ1ciÞ

þ Δ
2
ðciciþ1 þ c†iþ1c

†
i Þ þ 2μc†i ci

�
; ð1Þ

where ci denotes a spinless fermionic operator acting on
site i. The parameters J and Δ denote the hopping and
pairing strengths, and μ is the chemical potential. We

impose periodic boundary conditions. The Hamiltonian (1),
being quadratic in the fermionic operators, can be diagon-
alized by Fourier and Bogoliubov transformations, yielding
H ¼ P

k λkη
†
kηk, with ηk the Bogoliubov fermionic oper-

ators and λk the mode energies; see [13] for details. The
Kitaev chain undergoes a quantum phase transition
between topologically distinct phases at μ ¼ �J [12]
and hence satisfies condition (i).
To derive an open-system master equation that therma-

lizes at late times, we consider L identical and independent
bosonic baths, each of which is weakly coupled to one of
the sites of the Kitaev chain [14]. Using results by
D’Abbruzzo and Rossini [15], a Markovian master
equation in Lindblad form can be derived in a self-
consistent way,

_ρ ¼ −i½H; ρ� þ γ
X
k

X
σ¼�

ð2LkσρL
†
kσ − fL†

kσLkσ; ρgÞ; ð2Þ

where ρ denotes the density operator of the Kitaev chain, γ
is the system-bath coupling, and angular and curly brackets
denote commutators and anticommutators, respectively.
The jump operators Lk� are of the form Lkþ ¼ ffiffiffiffiffiffiffiffi

Γkþ
p

η†k
and Lk− ¼ ffiffiffiffiffiffiffi

Γk−
p

ηk, where the couplings Γk� contain the
baths’ temperatures and spectral densities. A derivation of
Eq. (2) and expressions for the jump operators are given in
the companion paper [13]. Unlike in Kitaev chains with
ad hoc introduced dissipation [16], we ended up with jump
operators that are nonlocal in the lattice fermions ci, which
is essential for thermalization to occur and condition (ii) to
be satisfied.
The jump operators Lk� are linear in the Bogoliubov

fermions ηk; see [13] for details. As a result, the master
equation (2) is quadratic in the fermionic operators and can
be diagonalized in Liouville space by the method of third
quantization [17], which accounts for property (iii) of the
above list. For the analysis of universal features and the loss
of adiabaticity of the dynamics of this model, the main
quantities of interest are the time-dependent mode occu-
pation numbers Pk ¼ hη†kηki. These in turn can be
expressed in terms of two-point correlation functions in
Liouville space, which we calculate by a formalism due to
Kos and Prosen [18]. Calculating Pk then amounts to
numerically solving 4 × 4-matrix differential equations
with time-dependent coefficients, as reported in detail in
the companion paper [13].
Temperature ramps in the Kitaev chain.—When deriv-

ing the master equation (2), the bath temperature T of the
microscopic model gets imprinted onto the jump operators
Lkσ , which become T dependent. To realize the cooling
protocol (c) illustrated in Fig. 1, we consider T as a time-
dependent quantity that decreases linearly with velocity v
from some initial value Ti > 0 to zero, TðtÞ ¼ Ti − vt with
t ∈ ½0; tf ¼ Ti=v�. This renders the right-hand side of
Eq. (2) explicitly time dependent. The ramp dynamics
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starts from a thermalized initial state ρ ∝ expð−H=TiÞ at
t ¼ 0. If the ramp was carried out infinitely slowly, i.e.,
with v ≃ 0, then the system would evolve through a
continuum of thermal states with temperatures TðtÞ for
the entire duration of the ramping protocol. For finite
velocities v, however, adiabaticity is violated and excess
excitations survive on top of the thermal excitations of an
equilibrium state with temperature TðtÞ.
When specializing to temperature ramps, the earlier

mentioned matrix differential equations for mode occupa-
tions Pk can be simplified, resulting in uncoupled rate
equations

d
dt

Pk ¼ −
1

τðλk; TðtÞÞ
fPk − Pth½λk=TðtÞ�g; ð3Þ

see [13] for a derivation. Here, λk denotes the energy of the
k mode and PthðxÞ ¼ ½expðxÞ þ 1�−1 is the Fermi-Dirac
distribution. The mode relaxation rate

τ−1ðλk; TÞ ¼ 2γJ ðλkÞ coth½λk=ð2TÞ� ð4Þ

is proportional to the system-bath coupling strength γ. The
bath spectral density J of the bosonic baths from which the
Lindblad equation (2) was derived is arbitrary, but we
usually consider power law spectral densities J ðλÞ ¼
πδλs expð−λ=λcÞ with parameter δ. In the regime where
the Markov approximation is justified, the cutoff frequency
λc can be chosen well above the mode frequencies without
loss of generality, allowing for the approximation
J ðλkÞ ≈ πδλsk. Based on the rate equations (3), the time
evolution of mode occupation numbers can be calculated
for temperature ramps in fairly large systems of 106 lattice
sites and more.

To measure the degree to which adiabaticity is violated in
the course of such ramps, we use the excitation density

EðtÞ ¼ 1

L

X
k

PkðtÞ ¼
1

L

X
k

hη†kηkiðtÞ: ð5Þ

Figure 2(a) shows plots of the time evolution of the
excitation density (5) of the Kitaev chain (1) at the critical
parameter value μ ¼ −J ¼ −1 for temperature ramps of
different velocities. At the initial time t ¼ 0 the system is
thermalized and the excitation density Eð0Þ agrees with the
excitation density Eth of the thermal equilibrium distri-
bution with temperature Tð0Þ ¼ Ti [top right corner of
Fig. 2(a)]. During the initial phase of the ramp, the system
thermalizes fast, hence cooling down concurrently with the
bath such that the excitation density agrees with the thermal
one. The closer the quantum critical point at T ¼ 0 is
approached, the longer thermalization takes, until adiaba-
ticity breaks down and excess excitations survive in
addition to the thermal ones [left part of Fig. 2(a)].
The point at which adiabaticity is lost depends on the
ramp velocity v (as indicated by vertical lines) and the
initial temperature Ti [Fig. S1(a) of the Supplemental
Material [19] ].
In this crossover region, E “freezes” at an approximately

constant value, which gives rise to the plateaus in Fig. 2(a).
The plateau heights therefore encode information about the
value of T at which adiabaticity was lost. For a condensed
representation of the ramp data, we plot the plateau values
EðtfÞ, where TðtfÞ ¼ 0, as a function of the initial temper-
ature Ti for various ramp velocities v [Fig. 2(b)]. Each point
in the plot represents an entire ramp protocol. Points on the
dashed black diagonal correspond to ramps with suffi-
ciently small Ti and large v such that adiabaticity is lost
immediately when the protocol is started. Points below the

FIG. 2. (a) Excitation densities E vs TðtÞ for various ramp velocities v, calculated by numerically solving the rate equations (3) and
inserting Pk into (5). The dynamics starts from a thermal state at Ti ¼ 15 (top right corner). Dotted lines in the corresponding colors
mark the crossover temperatures between adiabatic and nonadiabatic cooling. Parameter values are L ¼ 106, J ¼ Δ ¼ 1, δ ¼ 1,
μ ¼ −1, γ ¼ 0.01. Excitation densities Eth of equilibrium distributions with temperature TðtÞ are shown in black. (b) Excitation
densities EðtfÞ at the end of the ramps as functions of the initial temperature Ti, shown for various values of v=γ. Parameters are
L ¼ 4 × 104, J ¼ Δ ¼ 1, δ ¼ 1, μ ¼ −1. Dotted vertical lines mark the crossover between adiabatic and nonadiabatic regimes. The
dashed black line ∝ Ti marks the limit v → ∞, in which the dynamics is nonadiabatic from the outset for any Ti. (c) As in (b), but
showing the rescaled excitation density EðtfÞ

ffiffiffiffiffiffiffiffi
γ=v

p
vs the rescaled initial temperature T̃i ¼ Ti

ffiffiffiffiffiffiffiffi
γ=v

p
, resulting in approximate data

collapse onto a single curve.
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dashed black diagonal correspond to ramps where initially
the dynamics is adiabatic, followed by a nonadiabatic
evolution at a later stage. The flat plateaus on the right-
hand side of the plot indicate that adiabaticity is lost at a
fairly sharp freeze-out point, roughly at the same temper-
ature TðtÞ, independent of the initial temperature Ti. This is
good news for our aim of deriving a scaling theory à la
Kibble-Zurek, for which the sharp separation of adiabatic
and frozen regimes is a presupposition. In fact, the separate
curves in Fig. 2(b) can be made to collapse onto each other
by rescaling the plot axes with suitable powers of v; see
Fig. 2(c). Similar behavior, albeit with different scaling
powers, is found for E as a function of v [19]. These
findings suggest that the excitation density E obeys scaling
laws with respect to both Ti and v.
Scaling theory for temperature ramps.—To understand

the observed data collapse, we use the rate equation (3) as a
starting point for deriving a scaling theory for the excitation
density under temperature ramps. Despite explicit time
dependencies in the relaxation rate (4) and the thermal
equilibrium distribution, Eq. (3) can be solved analytically
(see [29], Sec. I. 1.4). Assuming large system sizes and
restricting to moderate excitation densities, the result of the
calculation is

EðT; Ti; γ=vÞ ¼
1

πzc1=z

Z
∞

0

dλλ1=z−1P
�
T
λ
;
Ti

λ
;
γλsþ1

v

�
ð6Þ

with

Pðx;y;zÞ¼Pthð1=yÞezfðx;yÞ−2πδz

×
Z

x

y
dx0e−zfðx0;xÞ coth½1=ð2x0Þ�Pthð1=x0Þ; ð7aÞ

fðx;yÞ¼ 2πδ

Z
x

y
dx00 coth½1=ð2x00Þ�; ð7bÞ

see Supplemental Material [19] for a derivation. The
equilibrium dynamical critical exponent z and constant c
in Eq. (6) are determined by the leading order expansion
λk ¼ cjkjz of the dispersion relation of the Hamiltonian at
the critical point, yielding c ¼ jΔj and z ¼ 1 for the Kitaev
chain (1). The scaling plot in Fig. 2(c) suggests that
Eqs. (6)–(7b) possess an inherent structure. Indeed, it is
straightforward to verify that E is a generalized homo-
geneous function,

EðlzT;lzTi;l−zðsþ1Þγ=vÞ ¼ lEðT; Ti; γ=vÞ ð8Þ
for arbitrary l. Specializing to ramps ending at T ¼ 0 and
choosing l ¼ ðγ=vÞ1=½zðsþ1Þ� yields

ðγ=vÞ1=½zðsþ1Þ�Eð0; Ti; γ=vÞ ¼ Eð0; T̃i; 1Þ; ð9Þ
which demonstrates that a properly rescaled excitation den-
sity E is a function of a single variable T̃i ≡ ðγ=vÞ1=ðsþ1ÞTi

only. Put differently, numerical evaluation of the univariate
function on the right-hand side of Eq. (9) gives access to the
bivariate function Eð0; Ti; γ=vÞ. Inserting the dynamical
critical exponent z ¼ 1 of the Kitaev chain and s ¼ 1 for an
Ohmic spectral density, this result confirms and explains
the data collapse observed in Fig. 2(c). Small imperfections
of the numerical data collapse may be attributed to the
idealizing assumptions made in the derivation of the
analytic results (6)–(7b). An asymptotic analysis of
Eqs. (6)–(7b), detailed in the Supplemental Material
[19], reproduces the constant behavior ðγ=vÞ1=2E ∼ c1 in
the limit of large T̃i observed in Fig. 2(c), as well as the
linear increase ðγ=vÞ1=2E ∼ c2T̃

1=z
i for small T̃i, with

constants jΔjc1 ¼
R∞
0 dλPð0;∞; λ2Þ=π ≈ 0.0526925 and

c2 ¼ Eð0; 1; 0Þ ¼ ðln 2Þ=ðπjΔjÞ. The crossover from linear
to constant behavior occurs at T̃i ¼ c1=c2, i.e., at an initial
temperature of Ti ≈ 0.239ðv=γÞ1=2. This temperature also
marks the transition from the initially adiabatic to the
nonadiabatic cooling regimes in Figs. 2(b) and 2(c).
Based on the homogeneity (8), similar scaling laws can

be obtained for E as a function of γ=v,

T−1=z
i Eð0; Ti; γ=vÞ ¼ Eð0; 1; T̃sþ1

i Þ; ð10Þ

and also for ramps ending at nonzero temperatures; see
Sec. I of [19].
Model-independent scaling theory.—The derivation of

the scaling relations (8) and (9), while formally presented
for the Kitaev chain in a thermalizing bosonic bath, is
insensitive to many of the model’s details. From a physical
point of view, this is expected: It is characteristic for
Kibble-Zurek physics that key results depend only on a few
basic (and often universal) ingredients like the critical
exponents of the underlying quantum phase transition,
whereas specific details of the model do not play much
of a role.
From a technical point of view, the model independence

of our results can be understood from the derivation of the
scaling relations in Sec. II of the Supplemental Material
[19]: While a rate equation of the form (3) is required, the
precise functional form of the relaxation rate (4) is not
crucial. In fact, any relaxation rate that is an arbitrary
function of T=λk, multiplied by some power of λk, will
result in EðT; Ti; γ=vÞ being a generalized homogeneous
function. Rate equations for mode occupation numbers
appear widely for Markovian open quantum systems. They
result generically from the class of quadratic thermalizing
master equations considered in Ref. [15], of which our
setup is one example. Even for cases where a bath-induced
coupling between the various excitation modes exists, as in
Ref. [10], the asymptotic approach to equilibrium is still
believed to be well described by the rate equation picture,
albeit with a single collective relaxation rate capturing
the coupling between the excitation modes. The scaling
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behavior of this excitation rate will then impact the scaling
of the excitation density itself, as confirmed in Ref. [10] for
transverse-field Ising and XY chains by direct calculations
with Keldysh techniques.
Discussion.—A practical merit of temperature ramps in

the context of Kibble-Zurek–type nonequilibrium physics
is the emergence of clean scaling laws, as is evident from
Eqs. (8)–(10) and Fig. 2(c). This is in contrast to parameter
ramps at nonzero T, as illustrated by arrow (b) in Fig. 1,
where the excitation density E is a sum of two different
power laws in the limit of weak system-bath coupling [10]
and even more complicated otherwise. More complicated
functional forms restrict the observation of universal
scaling laws to narrow parameter regimes and render it
challenging, if not impossible, to extract critical exponents
from numerical or experimental data. Similarly, no clean
scaling laws are obtained for cooling protocols at fixed
noncritical values μ ≠ μc; see Sec. IV of [19].
While temperature ramps give rise to clean scaling laws

containing the dynamical critical exponent z, no other
critical exponent of the transition features. Parameter ramps
at T > 0, on the other hand, are also influenced by the
correlation length critical exponent ν, but not in the form of
clean scaling laws. A solution to this issue, i.e., a strategy
for “cleaning up” polluted scaling laws while retaining a ν
dependence, may again be based on T-dependent proto-
cols: Simultaneous ramping of T and a suitable power of
the Hamiltonian parameter μ is expected to produce clean
scaling laws containing a combination of the exponents z
and ν, hence providing information complementary to that
obtained through pure cooling protocols.
Conclusions.—Cooling a system toward its quantum

critical point gives rise to universal nonequilibrium scaling
behavior governed by equilibrium quantum critical expo-
nents. We established the occurrence of scaling laws based
on an exact solution of the Lindblad equation describing a
Kitaev chain coupled to bosonic baths and subsequently
argued that similar scaling laws hold quite generally
whenever mode occupations are governed by rate equations
of the form (3).
We presented examples where the temperature is ramped

all the way to T ¼ 0, but this is not mandatory: The
homogeneity (8) of the excitation density with respect to T
implies that ramps ending at suitable, small but positive,
temperatures likewise lead to scaling behavior, which is a
more realistic scenario for applications. Moreover, it may
be useful for applications to replace linear temperature
ramps by power laws TðtÞ ¼ Tið1 − vt=TiÞη, which lead to
scaling with modified exponents, E ∼ ðv=γÞ1=½zðsþ1=ηÞ�.
Experimental verifications of our findings may be possible,
in principle, in any of the numerous solid-state realizations
of quantum phase transitions, conditional on the feasibility
of precise temperature control and experimental accessibil-
ity of mode occupation numbers. Alternatively, recent
proposals of cold atom-based analog quantum simulators

at finite temperature promise increased control and flexi-
bility [30], but still await experimental realization.
Our results open up avenues for generalizations and

extensions. The effect of long-range interactions can
straightforwardly be explored in open Kitaev chains, which
remain analytically solvable in the presence of long-range
hopping and/or pairing terms. Results are shown in Sec. V
of [19] and reveal changes of the quantum critical expo-
nents for sufficiently long-ranged hopping. Potential bene-
fits of simultaneous ramping of T and a Hamiltonian
parameter μ have been outlined in a previous paragraph.
Another interesting direction for future work, and also a
further step toward applications, is the study of temperature
ramps for models that couple to thermal baths only locally,
for example, at the ends of a chain, which results in
temperature gradients that will alter the creation of
excitations.
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Note added.—Related results for the transverse-field Ising
model have recently been reported in Ref. [31].
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