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Biological functions in living systems are closely related to their geometries and morphologies. Toroidal
structures, which widely exist in nature, present interesting features containing positive, zero, and negative
Gaussian curvatures within one system. Such varying curvatures would significantly affect the growing or
dehydrating morphogenesis, as observed in various intricate patterns in abundant biological structures. To
understand the underlying morphoelastic mechanism and to determine the crucial factors that govern the
patterning in toroidal structures, we develop a core-shell model and derive a scaling law to characterize
growth- or dehydration-induced instability patterns. We find that the eventual patterns are mainly
determined by two dimensionless parameters that are composed of stiffness and curvature of the system.
Moreover, we construct a phase diagram showing the multiphase wrinkling pattern selection in various
toroidal structures in terms of these two parameters, which is confirmed by our experimental observations.
Physical insights into the multiphase transitions and existence of bistable modes are further provided by
identifying hysteresis loops and the Maxwell equal-energy conditions. The universal law for morphology
selection on core shell structures with varying curvatures can fundamentally explain and precisely predict
wrinkling patterns of diverse toroidal structures, which may also provide a platform to design morphology-
related functional surfaces.
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The mysterious wavy patterns in the natural world attract
many researchers to investigate their biological functions
and physical origins [1–5]. Morphogenesis can be affected
by many intrinsic and external factors, often associated
with spontaneous symmetry breaking [6–8]. Along with
constituent properties [9,10] and external stimuli [11–14],
geometry is one of the most important physical factors, for
which curvature is a typical feature [15,16]. A cylindrical
core shell structure can exhibit axisymmetric sinusoidal to
nonaxisymmetric diamondlike pattern transition under
excess axial compression [17,18], while a spherical core
shell system upon shrinkage may experience a buckyball
pattern (periodic pentagons and hexagons) to labyrinth
transformation [9,10,15]. Uniaxially compressed bilayer
systems with negative Gaussian curvature promote a
sinusoidal or diamondlike mode transition [19]. Apart
from uniformly curved surfaces such as sphere and cylin-
der, the interesting toroidal geometry, which can be
considered as the bent or branched tubular structures
introducing curvature in the second principal directions,
contains regions with positive, zero, and negative Gaussian
curvatures. In nature, many biological tissues have core-
shell structures with such nonconstant curvatures, and
exhibit inherently different wrinkling morphologies com-
pared to the surfaces with more uniform curvatures (see

Fig. 1). Geometries with nonuniform curvatures are ubiqui-
tous in nature, but theoretical understanding and prediction
of their nonlinear instability are quite challenging. Why do
instability patterns on nonuniformly curved surfaces differ
from the ones on uniform geometries? How do varying
curvatures influence the morphology patterns? These ques-
tions remain elusive.
The toroidal system that integrates positive, zero, and

negative Gaussian curvatures into one configuration can be
considered as an ideal platform to explore in a single
system the morphological pattern selection and transition
affected by varying curvatures. In this work, we system-
atically develop a core-shell model based on general
differential geometry and derive a scaling law that can
effectively account for the complex wrinkling process on
toroidal surfaces. We reveal that in toroidal geometry with
nonuniform curvatures, pattern selection becomes much
more complicated, usually with coexistent multiphases. We
draw a universal phase diagram of their surface topogra-
phies determined by two dimensionless parameters in a
wide range of parameter space, which are also confirmed
by our demonstrative experiments.
We first develop a general toroidal core-shell model [21]

based on differential geometry. Curvilinear coordinates
ðθ1; θ2Þ are adopted for the toroidal shell with radii R
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and r, where R denotes distance from the center of the torus
to the axes of the shell with a radius r [see Fig. 1(e)]. The
total elastic potential energy Πf of the surface layer can be
written as the sum of stretching energy Πm and bending
energy Πb [28,29], which is different from the Canhan-
Helfrich model only involving bending energy but no
stretching energy [30,31]:

Πf ¼ Πm þ Πb

¼ J
2

Z
θ2

Z
θ1

½ε211 þ ε222 þ 2νε11ε22 þ 2ð1 − νÞε212�ds

þD
2

Z
θ2

Z
θ1

½κ211 þ κ222 þ 2νκ11κ22 þ 2ð1 − νÞκ212�ds;

ð1Þ

where J ¼ Efhf=ð1 − ν2Þ and D ¼ Efh3f=½12ð1 − ν2Þ� re-
present, respectively, the extensional rigidity and bending
stiffness of the shell, and ds ¼ rðRþ r cos θ1Þdθ1dθ2
stands for the differential element area. Young’s modulus,
thickness, and Poisson’s ratio of the shell are denoted by
Ef, hf, and ν, respectively. We consider a Winkler-type
foundation [32,33] for the elastic behavior of the core, and
its potential energy reads

Πs ¼
1

2

Z
θ2

Z
θ1

Ksw2ds; ð2Þ

in which w is the deflection and Ks denotes the effective
stiffness of the core, satisfying the order of magnitude
Ks ∼ Es=l, where l is the half buckling wavelength [32].
We further perform dimensional analysis of the potential

energies (1) and (2) to find the crucial factors that determine
wrinkling topography. Assuming that the deflectionw is the
same order of the thickness hf and the in-plane displace-
ments ðu; vÞ remain much smaller, in order of h2f=r, the
following dimensionless coordinates and kinematic varia-
bles are introduced,

ðx; yÞ ¼ lðx̄; ȳÞ; ðu;vÞ ¼ h2f
r
ðū; v̄Þ; w¼ hfw̄; ð3Þ

where x and y are arclengths. For a toroidal shell without a
core, the half buckling wavelength l can be obtained by
assuming the bending energy and membrane energy in the
same order. Considering κ ∼ ∂

2w=∂x2, one obtains Πb=l2 ∼
Efh3fκ

2 ∼ Efh5f=l
4 and Πm=l2 ∼ Efhfðw=rÞ2 ∼ Efh3f=r

2.
Comparing the orders of magnitude of the bending
and membrane energies yields the critical wrinkling
wavelength l:

Efh5f
l4

∼
Efh3f
r2

⇒ l ∼
ffiffiffiffiffiffiffi
rhf

q
: ð4Þ

Considering a thin shell with hf=r ≪ 1 and neglecting
higher-order terms yields the leading orders of magnitude
of strain and curvature tensors [21]:

εαβ ∼
hf
r
; καβ ∼

1

r
; ð5Þ

where the subscript greek indices fα; βg ∈ f1; 2g.
Substituting Eq. (5) to the potential energies (1) and (2)
leads to the orders of magnitude of energies:

Πf

l2
∼
Efh3f
r2

;
Πs

l2
∼ Ksh2f: ð6Þ

Comparing both energies naturally leads to a dimensionless
parameter that measures the relative stiffness and curvature:

Cs ¼
Ks

Ef

r2

hf
: ð7Þ

Notably, this dimensionless parameter Cs together with the
radius ratio α can characterize awide range ofmorphological
pattern selection in core-shell tori.
To explore morphological formation and evolution of

toroidal core shell structures, we apply the finite element
method that couples shell element for the surface layer and
spring element for the soft core [21]. The dehydration
process results in strain mismatch between the surface layer
and the substrate, and thus we apply thermal mismatch load

(a) (c)

(b)

(e)

(d)

FIG. 1. Surface wrinkling morphologies in various living matter
with toroidal geometry. (a) Bidirectional stripes on a garlic.
(b) Hexagonal-labyrinth bistable patterns on a dehydrated pepper.
(c) Transverse and longitudinal wrinkles on an adult male
Caenorhabditis elegans. Image obtained through SEM by Caro-
lyn Marks and David Hall of the Hall Lab in WormAtlas [20].
(d) Wrinkles in Crown jellyfish; photo by Jason Webb. (e) Geom-
etry of a core-shell torus.
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between the shell and the core [21]. The heterogeneity of
stress distribution in the prebuckling stage due to varying
curvatures in toroidal geometry is a physical “motor” to
induce symmetry-breaking instability and pattern transition.
We look into the effects of varying curvatures on

wrinkling topography of toroidal core shell structures
according to the key parameters α and Cs. The radius
ratio α determines the spatial topology; i.e., small value
(α ∼ 1) approximates to a sphere [Figs. 2(a) and 2(b)] while
large value represents a torus. For the former one with a stiff
core [e.g., Cs ¼ 81 in Fig. 2(a)], axisymmetric stripes
emerge in the outside region with positive Gaussian
curvature, while spiral stripes appear in the inner region
with negative Gaussian curvature. We next consider a torus
with a soft core and set Cs ¼ 8.1. Instead of the stripe mode
observed in the stiff core case, hexagonal topography
dominates in the outside region. With further loading, a
mode transition from hexagonal to labyrinthlike patterns
associated with a bistable phase is observed in Fig. 2(b).
We next explore donutlike tori with relatively large

radius ratio (α ¼ 5). For a torus with a stiff core
(Cs ¼ 16), stripes along the θ1 direction in the inner region
occur initially, as illustrated in Fig. 2(c). Upon further
loading, hexagonal pattern emerges on the outer surface,
and eventually evolves into labyrinthlike topography. For

the donutlike torus with a soft core (Cs ¼ 0.16), localized
dimples emerge on the inner surface at the critical threshold
[see Fig. 2(d)]. In general, for the donutlike torus with large
α, instability is prone to appear first in the region with
negative Gaussian curvature.
To provide an overall view of complex multiphase

wrinkling morphologies of various toroidal structures,
we draw in Fig. 3 a phase diagram of pattern selection
in terms of Cs and α, which determines pattern selections in
a wide range of parameter space [21]. The core-shell tori
with smallCs < 1 tend to deform to localized dimples (blue
region), while bidirectional stripe topography (orange
region) and spiral and axisymmetric coexistent stripe
morphology (purple region) prevail in core-shell tori with
larger Cs > 10. For a moderate Cs in between, periodic
hexagons (red region) and symmetry-breaking hexagonal-
labyrinth coexistent patterns (green region) appear to be
energetically favorable. To confirm such curvature-affected
morphogenesis predicted by our numerical predictions, we
design a series of demonstrative experiments by using
polydimethylsiloxane (PDMS) coated elastomer that can
shrink at decreasing temperature or swell in a compatible
organic solvent such as hexanes [21]. We apply 3D printing
technology to construct toroidal molds made of photo-
polymer resin with different radius ratios α, which are then

(a) (b)

(c) (d)

FIG. 2. Bifurcation diagrams of diverse toroidal core shell structures. (a) A cherrylike torus (α ¼ 1.1 and Cs ¼ 81). Axisymmetric
stripes appear in the outside region of torus, while spiral stripes emerge in the inner region. The inset in red box indicates axisymmetric
stripes on a peach. (b) A cherrylike torus with a soft core (α ¼ 1.1 and Cs ¼ 8.1). A hexagonal to labyrinthlike topography transition,
associated with a bistable phase, is observed in the postbuckling regime. The inset in red box shows hexagons on a shrinking cherry.
(c) A donutlike torus (α ¼ 5 and Cs ¼ 16). Stripes emerge in the inner region initially, yet hexagonal pattern prevails on the outer
surface and eventually evolves into labyrinthlike topography. The inset in red box illustrates hexagonal-labyrinth bistable patterns on a
dehydrated pepper. (d) A donutlike torus with a soft core (α ¼ 5 and Cs ¼ 0.16). Localized dimples are observed. The inset in red box
demonstrates dimples on a dehydrated pepper. The spatial point on the core-shell surface with maximum deflection at the final
incremental step is chosen for each bifurcation curve.
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used to cast the core of torus with silicone-based elasto-
mers, such as gel and PDMS (Sylgard 184, Dow Corning).
We then adopt PDMS base that is homogeneously mixed
with cross-linker at a 10∶1 mass ratio to uniformly pour on
the toroidal core for making the surface layer. Upon thermal
shrinkage or chemical swelling in hexanes, a variety of
surface morphologies form (see Fig. 3). Experimental
morphology evolutions show a high consistency with
dehydrating fruits and numerical predictions [21].
To further explore the underlyingmechanism of intriguing

smooth-hexagonal-labyrinth transitions [see Fig. 2(b)], we
look into a complete loading-unloading cycle in computa-
tions. The maximum deflections are plotted in Figs. 4(a) and
4(b), where the progression along the curves in the loading
and unloading segments of thepath history is indicated by the
direction of the arrows. Upon thermal load, periodic hex-
agons emerge at εs→h ¼ 0.0147. With further loading, a
bistable phase transitionwith hexagonal and labyrinthmodes
coexisting in this interval occurs, and labyrinth prevails
when the strain reaches εh→l ¼ 0.0194. During unloading,
the labyrinth reverts back to the hexagons again at
εl→h ¼ 0.0153. With further unloading, the hexagons return
to the smooth at a smaller overall strain εh→s ¼ 0.011,
compared with loading stage (εs→h ¼ 0.0147). Viewing
the whole unloading process, two hysteresis loops are found
within the smooth-hexagonal and hexagonal-labyrinth tran-
sition stages. There is obvious hysteresis with smooth
prevailing during loading and hexagons dominating during
unloading in the range εh→s < εth < εs→h [see Fig. 4(a)].
Similarly, hexagonal-labyrinth transitions in Fig. 4(b) are

governed by two critical values, εl→h and εh→l. Yet it is still
difficult to judgewhat happenedduring smooth-hexagonal or
hexagonal-labyrinth coexistent stages.
Further insights into the coexistence of bistable phases

can be obtained from examining the differences in the
elastic energy in the core shell structures between the
loading and unloading states, Ulo −Uul, associated with
hysteresis cycles. Pattern transitions in the postbuckling
regime generally imply the change of energy states. We first
focus on smooth-hexagonal transformations. When the
energies of the smooth state Us and the hexagonal state
Uh share the same value of an overall strain, it is defined as
the Maxwell strain εshMax [34]. In the smooth-hexagonal
transition region, the hexagonal state has a higher energy
than the smooth state (Uh −Us > 0) when the overall
strain is lower than the Maxwell strain (εth < εshMax), while
the hexagonal state has a lower energy (Uh −Us < 0)
when εth > εshMax [see Fig. 4(c)]. The smooth phase is stable
when εth < εshMax, and the hexagonal solution existing in
this range remains subcritical. At the Maxwell condition
(εth ¼ εshMax), the smooth state and the hexagonal state hold
the same energy and, in principle, can coexist. Under such
conditions, if εth is then increased above εshMax, the hex-
agonal mode prevails, while if εth is reduced below εshMax,
the smooth state dominates engulfing the hexagons. The
energy in hexagonal phase remains asymptotically constant
in the range εshMax < εth < εhlMax, which suggests that hex-
agonal solutions are stable within this interval. A similar
mechanism is observed for hexagonal-labyrinth transitions

FIG. 3. Phase diagram of wrinkling morphologies in a variety of core-shell structures, consistent with experimental observations.
Localized dimples (blue region) appear in core shell systems with small Cs < 1, while bidirectional stripe topography (orange region)
and spiral and axisymmetric coexistent stripe morphology (purple region) dominate in core shell systems with larger Cs > 10. Periodic
hexagonal patterns (red region) and hexagonal-labyrinth bistable modes (green region) are favorable in between.
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in Fig. 4(d), where the Maxwell strain εhlMax ¼ 0.0156,
associated with that the energy of the hexagonal state Uh
equals to the labyrinth state Ul, i.e., Uh −Ul ¼ 0, which
explains the coexistence of hexagonal and labyrinth phases.
In summary, we have uncovered the postbuckling evolu-

tion and morphological pattern transitions of toroidal core
shell structures omnipresent in nature. A remarkable finding
lies in a universal law that determines complex wrinkling
topography on diverse tori with varying Gaussian surfaces
and interprets the biophysical interplay between geometry
and material stiffness on multiphase pattern selection, con-
firmed by our carefully designed experiments. Notably, we
have revealed that donutlike tori (α > 2) are prone to initially
wrinkle in the inner regionwith negative Gaussian curvature,
yet cherrylike tori (α < 2) favor towrinkle in the outer region
with positive Gaussian curvature [21]. A dimensionless
parameter Cs that characterizes the stiffness ratio and geo-
metric curvature of core shell structures is found to determine
the eventual instability topography. Localized dimples are
preferable in core-shell tori with Cs < 1, while bidirectional
stripe or spiral and axisymmetric coexistent stripe is

favorable in core-shell tori with Cs > 10. For a moderate
Cs in between, periodic hexagons and symmetry-breaking
hexagonal-labyrinth coexistent patterns prevail. Local wrin-
kling pattern selection in nontoroidal geometry such as
S-shaped core shell systems [21] can also be well predicted
by the phase diagram based on the local values of both
dimensionless parameters, which suggests that our theory is
universal and can be applicable to a large class of core-shell
systems (e.g., see Fig. 1). Hysteresis loops and the Maxwell
equal-energy conditions provide physical insights into
smooth-hexagonal and hexagonal-labyrinth transitions.
Understanding the configurational curvature effects on
nonuniform morphological pattern formation in core-shells
and the ability of determining multiphase selection can shed
light on designs of multifunctional surfaces based on
wrinkling topography.
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Néel, J. Membr. Sci. 92, 169 (1994).

[27] T. Tallinen, J. Y. Chung, J. S. Biggins, and L. Mahadevan,
Proc. Natl. Acad. Sci. U.S.A. 111, 12667 (2014).

[28] N. Yamaki, Elastic Stability of Circular Cylindrical Shells
(North-Holland, Amsterdam, 1984).

[29] A. M. A. van der Heijden, W.T. Koiter’s Elastic Stability
of Solids and Structures (Cambridge University Press,
New York, 2009).

[30] J.-M. Allain, C. Storm, A. Roux, M. Ben Amar, and J.-F.
Joanny, Phys. Rev. Lett. 93, 158104 (2004).

[31] J.-M. Allain and M. Ben Amar, Eur. Phys. J. E 20, 409
(2006).

[32] M. Biot, J. Appl. Mech. 203, A1 (1937).
[33] H. G. Allen, Analysis and Design of Structural Sandwich

Panels (Pergamon Press, New York, 1969).
[34] G.W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods,

M. Ahmer Wadee, C. J. Budd, and G. J. Lord, Nonlinear
Dyn. 21, 3 (2000).

PHYSICAL REVIEW LETTERS 130, 048201 (2023)

048201-6

https://doi.org/10.1103/PhysRevLett.124.038003
https://doi.org/10.1103/PhysRevLett.124.038003
https://doi.org/10.1038/nmat4202
https://doi.org/10.1103/PhysRevLett.120.048002
https://doi.org/10.1016/j.jmps.2014.09.005
https://doi.org/10.1016/j.jmps.2014.09.005
https://doi.org/10.1016/j.jmps.2016.04.025
https://doi.org/10.1016/j.jmps.2016.04.025
https://doi.org/10.1016/j.jmps.2021.104516
https://doi.org/10.1016/j.jmps.2021.104516
http://www.wormatlas.org
http://www.wormatlas.org
http://www.wormatlas.org
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.048201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.048201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.048201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.048201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.048201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.048201
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.048201
https://doi.org/10.1007/s10659-005-4738-8
https://doi.org/10.1073/pnas.1811296115
https://doi.org/10.1021/ac0346712
https://doi.org/10.1021/ac0346712
https://doi.org/10.1016/0376-7388(94)00060-3
https://doi.org/10.1073/pnas.1406015111
https://doi.org/10.1103/PhysRevLett.93.158104
https://doi.org/10.1140/epje/i2006-10030-4
https://doi.org/10.1140/epje/i2006-10030-4
https://doi.org/10.1023/A:1008398006403
https://doi.org/10.1023/A:1008398006403

