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We introduce and explore an interacting integrable cellular automaton, the Fredkin staircase, that lies
outside the existing classification of such automata, and has a structure that seems to lie beyond that of any
existing Bethe-solvable model. The Fredkin staircase has two families of ballistically propagating
quasiparticles, each with infinitely many species. Despite the presence of ballistic quasiparticles, charge
transport is diffusive in the dc limit, albeit with a highly non-Gaussian dynamic structure factor.
Remarkably, this model exhibits persistent temporal oscillations of the current, leading to a delta-function
singularity (Drude peak) in the ac conductivity at nonzero frequency. We analytically construct an
extensive set of operators that anticommute with the time-evolution operator; the existence of these
operators both demonstrates the integrability of the model and allows us to lower bound the weight of this
finite-frequency singularity.
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Introduction.—In conventional metals, the optical con-
ductivity has a peak at zero frequency with a width set by
the mean free time. This zero-frequency peak is called the
“Drude peak” and becomes sharp in the limit of low
temperatures or weak interactions. Recently, motivated
by experiments on bad metals [1,2], there has been
considerable interest in systems that have finite-frequency
Drude peaks [3–7]. Attempts have been made to model
these in terms of imperfect Anderson localization [4] and
fluctuating density waves [6]; such explanations yield a
broad maximum: the peak frequency and the width of the
peak are set by the same scale. To our knowledge, no model
has been shown to have both an O(1) dc resistance and a
sharp finite-frequency Drude peak.
In the present work we construct an exactly solvable

model with these features. This model is an interacting
integrable cellular automaton, with an update rule ana-
logous to the Fredkin model which we dub the Fredkin
staircase automaton (FSA) [8,9]. The Fredkin model is one
of a large class of kinetically constrained models (KCMs)
that have recently been explored and shown to exhibit
anomalous dynamical properties [10–21]. Remarkably,
there are deep links between integrable systems and
KCMs: if one applies the update rules of a KCM in certain
deterministic sequences (rather than at random) one obtains
discrete-time integrable cellular automata. This correspon-
dence has been noted in multiple cases (see, e.g., Refs. [22–
32]); how general it is, and how the properties of the
stochastic and integrable versions of the model are related,
remain open questions.
We show that the FSA is integrable—we can construct

extensively many conserved quantities, and identify stable

quasiparticles. Remarkably, our simulations of scattering
events between quasiparticles suggest that, despite its
integrability, the FSA does not fit the standard Bethe
ansatz paradigm, and hence evades exact solvability at
present. Whether the Bethe ansatz framework can be
extended to the FSA is an important topic for future work.
After discussing the quasiparticle structure, we study

transport in this model by numerically computing its ac
conductivity through the Kubo formula [33]. Our central
result is that the ac conductivity has an infinitely sharp (i.e.,
δ-function) “Drude” peak at a nonzero frequency, associ-
ated with persistent oscillations of current fluctuations. We
are unaware of any other integrable systems with a non-
zero-frequency Drude peak. We explain this finite-
frequency Drude peak in terms of an infinite family of
charges that anticommute with the time evolution operator.
In terms of these charges, we derive an analytic lower
bound for the weight of the Drude peak. In addition to this
feature, the dc limit of the conductivity is finite, so transport
is asymptotically diffusive despite the presence of ballistic
quasiparticles. This peculiar phenomenon has been
observed and explained in the context of the easy-axis
XXZ spin chain [34–38]; remarkably it also occurs in this
model although its transport properties are otherwise very
different. In contrast to the XXZ spin chain, although the
FSA exhibits diffusion, its dynamical structure factor is
spatially strongly asymmetric, and obeys a scaling form
Cðx; tÞ ¼ t−1=zfðx=t1=zÞ, with z ¼ 2 and f a skewed, non-
Gaussian scaling function.
Model.—Our system is a one-dimensional chain of

qubits of length L whose basis states we represent as j•i
and j∘i to denote whether a particle has occupied a site or
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not. The dynamics is governed by a Floquet operator U,
shown pictorially in Fig. 1, which is composed of three
layers of four site unitary gates, i.e., U ¼ V3V2V1, where

Vi ¼
Y

j≡i mod 3

Uj;jþ1;jþ2;jþ3; ð1Þ

and

Uj;jþ1;jþ2;jþ3 ¼ P•
jSWAPjþ1;jþ2P•

þ P•
jSWAPjþ1;jþ2P∘

jþ3

þ P∘
jSWAPjþ1;jþ2P∘

jþ3

þ P∘
j1jþ1;jþ2P•

jþ3: ð2Þ

P•
j ¼ j•ih•jj, P∘

j ¼ j∘ih∘jj and SWAPj;jþ1 is the usual SWAP

gate. Note that these gates locally preserve particle number
so that the total particle number of the system is conserved.
By inspection, one can see that the Floquet operator is
invariant under translation by three sites; thus we break our
system into three site unit cells. This gate geometry was
first used (but with different gates) in Ref. [27], and one can
show that the gate geometry is equivalent to a staircase
geometry, hence the name Fredkin staircase automaton, as
the constrained swaps satisfy the so-called Fredkin con-
straint [39–49]. We note that the gate pattern we are using is
crucial for the model to be integrable. In the Supplemental
Material [50], we show that deforming the gate geometry
breaks the integrability of the model and leads to sub-
diffusion with an exponent z ≃ 8=3 in line with the
predictions of Ref. [8]. Each update conserves the total
number of • (and ∘) sites, so we can regard the fraction of •
sites as the “filling fraction” f.
Quasiparticles.—We first identify single quasiparticle

excitations of the FSA model above its vacuum state (i.e.,
the state j∘i⊗N). One can create states with a single
elementary quasiparticle by occupying a single site.

Since there are three inequivalent sites in the unit cell
there are three inequivalent quasiparticles [50]. For the gate
pattern and unit cell in Fig. 1, quasiparticles on the first and
third sites of the unit cell move ballistically leftward with
velocity vσ ¼ 3=2, shown in red in Fig. 2, whereas those on
the second site move rightward with velocity vβ ¼ 3,
shown in black in Fig. 2—as this notation anticipates we
will call the two left-moving quasiparticles σ quasiparticles
and the right-moving quasiparticle a β quasiparticle. (We
will avoid calling them left and right movers as the
direction they move is set by the arbitrarily chosen chirality
of the gate pattern.)
We now turn to the scattering between quasiparticles.

Here, in contrast to standard integrable systems, we find a
strong asymmetry between σ and β quasiparticles: the
trajectories of σ quasiparticles are totally unaffected by
collisions, while β quasiparticles are slowed down. When
colliding with a single σ quasiparticle, a sequence of s β

(a)

(b)

(c)

FIG. 1. Model. (a) Pictorial representation of the circuit
geometry described by Eq. (1). (b) Pictorial representation of
the rules associated to the Fredkin constraint as described in
Eq. (2). • represents particles while ∘ represents holes. (c) Time
evolution of a random product state in the occupation basis.

(a) (b)

(c) (d)

FIG. 2. Quasiparticles scattering. (a) A collision between a
single σ (colored red) and β (colored black) quasiparticle where
integer time steps represent evolving by a full Floquet step while
fractional steps indicate evolving by individual layers. One can
see the σ particle receives no scattering shift, but the β particle is
delayed by one Floquet time step. (b) A β string of (moving right)
collides with 10σ quasiparticles consecutively spaced by two unit
cells (moving left). One can clearly see that the velocity of the β
string is renormalized when it passes through the σ quasiparticles.
(c) A size 40β string collides with ten σ quasiparticles consecu-
tively spaced by ten unit cells. Observe that the β string’s velocity
is much lower than compared with the previous situation
indicating that the effective velocity of β strings is highly
dependent on spacings of σ quasiparticles. (d) Two β strings
collide when they encounter the large number of σ particles. One
can see that the smaller β-string overtakes the larger one after the
collision occurs.
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quasiparticles is slowed down by s unit cells. These
sequences thus form collectively moving bound states,
which we call β strings of size s. Collisions with σ
quasiparticles renormalize the velocities of such β strings
in an s-dependent way. Because β strings of different sizes
have different renormalized velocities (in the presence of σ
strings), two β strings can collide (when a smaller string
overtakes a larger one), as in the bottom-right panel of
Fig. 2. When two β strings of size ðs; s0Þ collide the faster of
them is further sped up (and the slower is further slowed
down) by 2 minðs; s0Þ unit cells. This scattering phase shift
precisely parallels the result for Heisenberg and XXZ spin
chains. We note that all the observations that we have made
regarding scattering have been empirically deduced from
the numerics. It would be interesting to construct an
analytical proof for these statements as well as further
investigate why the scattering shift of β strings parallels that
of the Heisenberg and XXZ spin chains.
To set up generalized hydrodynamics for this model, we

would need the scattering shifts between an arbitrary-size β
string and an arbitrary configuration of σ quasiparticles. In
a typical Bethe-ansatz solvable problem, the σ quasipar-
ticles would form some set of bound states or “σ strings,”
and the scattering shift accumulated by a β string passing
through the σ quasiparticles would be a sum of shifts due to
each σ-type string. In the FSA this separation does not
happen: rather, the scattering shift is sensitive to the full
pattern of spacings between σ quasiparticles (Fig. 2). Thus,
from the point of view of their scattering properties, even
two arbitrarily well separated σ quasiparticles cannot be
treated as independent scatterers with additive scattering
shifts. Although we are able to find expressions for the
scattering shift of an arbitrary β string in an arbitrary
background of σ quasiparticles, it is not clear how to
express these in the standard Bethe ansatz form.
Nevertheless, our numerical results strongly suggest that
all quasiparticles are stable (so the model is integrable),
and we now explicitly demonstrate this for the σ
quasiparticles.
Integrability.—In this section we show that there are an

infinite number of quasilocal operators that are conserved.
The construction relies on the observation that evolution by
one Floquet step maps P•

3xþ1P
∘
3xþ3 to P•

3xP
∘
3xþ1 and maps

P•
3xP

∘
3xþ1 to P•

3x−2P
∘
3x (we use the convention that the

index of the first site in the unit cell has the form
3jþ 1). Intuitively the evolution of these projectors
corresponds to a σ quasiparticle propagating to the left.
One can construct a number operator counting the total
number of σ quasiparticles spaced by s unit cells, and it is
given by

Ns ¼ NA
s þ NB

s ; ð3Þ

where

NA=B
s ¼

XL=3−1

x¼0

PA=B
x

Ys

y¼1

ð1 − PA=B
xþyÞPA=B

xþsþ1; s > 0 ð4Þ

NA=B
0 ¼

XL=3−1

x¼0

PA=B
x PA=B

xþ1; ð5Þ

where PA
x ¼ P•

3xþ1P
∘
3xþ3 and PB

x ¼ P•
3xP

∘
3xþ1. We note that

the NA=B
s correspond to the asymptotic spacings [35] of the

σ quasiparticles.
One can see that Ns is conserved since the Floquet

operator maps PA
x to PB

x and PB
x to PA

x−1. All operators
commute with each other since they are diagonal in the
occupation basis. Additionally, they are orthogonal to each
other under the Hilbert-Schmidt inner product (i.e.,
hA;Bi≡ 2−LhA†Bi) because for s0 > s, all terms in Ns0

have larger support than all terms in Ns. Since we
constructed an infinite set of linearly independent con-
served quasilocal operators, the FSA model is integrable.
We note that there are clearly more operators which are
conserved such as the total number of β strings. It would be
interesting to further investigate the algebraic integrable
structure of this model in future work [26–29,54,55].
Transport.—Because of its integrability, it is natural to

expect particle transport in the FSA model to be ballistic: if
the particle current overlaps with any of the conserved
charges, it cannot fully relax leading to persistent currents.
In what follows, we argue analytically and numerically that
transport in the FSA is a lot more exotic and interesting:
none of the charges uncovered above overlap with the
current operator, and we find numerically that low fre-
quency transport is diffusive. However, we identify ana-
lytically another set of changes which anticommute with
the time evolution operator, and which do have a finite
overlap with the current. We argue that this leads to a finite
Drude peak in the conductivity at frequency ω ¼ π.
Alternatively, it shows that the FSA is a (fine-tuned)
equilibrium discrete time-crystal [56–59], as it exhibits
persistent oscillating currents.
We characterize the transport properties of the FSA by

computing the current-current correlation function,
CJJðtÞ ¼ ð1=LÞhJðtÞJð0Þi, where JðtÞ ¼ P

x jðx; tÞ and
jðx; tÞ represents the local current density and hAi≡
2−LtrðAÞ for an operator A. We present the details of the
calculation of jðx; tÞ and its lengthy expression in the
Supplemental Material [50]. We numerically computed
CJJðtÞ using classical evolution, and averages are per-
formed over 108 random initial states.
From the current-current correlator, we compute the ac

conductivity σðωÞ by using the Kubo formula [33]

σðωÞ ¼ 1

2
CJJðt ¼ 0Þ þ

X∞

t¼1

eiωtCJJðtÞ: ð6Þ
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Because of the Floquet (discrete time) nature of the model,
we have ω ∈ ½0; 2πÞ. We computed this conductivity
numerically; see Fig. 3. One can see a clear peak at ω ¼
π indicating persistent oscillations in the time-dependent
conductivity and hence also the current-current corre-
lator. We attribute these persistent oscillations to the
existence of an extensive number of operators Q such that
U†QU ¼ −Q. To see that such operators imply such
persistent oscillations, consider the π-Drude weight,
defined as

Dπ ¼ lim
t→∞

1

t

Xt

τ¼1

ð−1ÞτCJJðτÞ: ð7Þ

The π-Drude weight characterizes the weight of a possible
Drude (delta function) peak in the conductivity at fre-
quency π.
One can show that if a collection of operators Qs satisfy

the aforementioned conditions then one can lower bound
Dπ through the application of a Mazur bound [60–62], i.e.,

Dπ ≥
3

L

X

s

hJð0ÞQsi2
hQ2

si
: ð8Þ

A family of such operators are Qs ¼ NA
s − NB

s . Since U
evolves NA

s to NB
s at each time step we have

fQs;Ug ¼ 0: ð9Þ

We remark that if these were all the charges which
anticommuted with U then Eq. (8) would become an
equality. The fact that hJð0ÞQsi ≠ 0 means that Dπ is
nonzero which implies that CJJðtÞ necessarily has to be of
the form CJJðtÞ ¼ ð−1ÞtðDπ þ subleading termsÞ. Such
persistent oscillations indicate that the FSA is a dis-
crete time crystal—albeit fine-tuned rather than generic
[56–59,63].
Despite this exotic behavior near ω ¼ π frequency, low-

frequency transport appears to be diffusive. None of the
charges [Eq. (4)] overlap the current, so there is no obvious
zero-frequency Drude weight. Numerically, we find that the
averaged Kubo correlators CJJðtÞ þ CJJðtþ 1Þ decay as
t−β, with an exponent β ≈ 1.7 > 1, indicating a finite dc
conductivity σðω ¼ 0Þ, and thus a finite diffusion constant.
The structure factor Cðx; tÞ ¼ hqðx; tÞqð0; 0Þi, with q the
local particle number appropriately coarse grained over unit
cells [50], displays an ever richer structure (Fig. 3), with
some ballistic peak (shown in the bottom left panel of
Fig. 3) carrying vanishing weight due to σ strings, and an
asymmetric non-Gaussian diffusive peak near the origin.
This is drastically different from nonintegrable versions of
the model where one sees subdiffusive scaling and a
symmetric structure factor [8,50].
Discussion.—In this Letter, we introduced a new revers-

ible cellular automaton based on the Fredkin update rule.
We showed that the spectrum of this automaton contains
two genera of stable quasiparticles, the β strings and the σ
quasiparticles. The β strings of all sizes have the same bare
velocity, but are renormalized differently through their
collisions with σ quasiparticles. Thus this model features
an infinite hierarchy of quasiparticles with distinct effective
velocities above a typical thermal state. The motion of the σ
quasiparticles, meanwhile, is unaffected by the scattering,
so it is not entirely clear if (and how) one can assign them to
“strings.” As we discussed, the β-σ scattering depends
nontrivially on the spacing between adjacent σ quasipar-
ticles; while this dependence can be computed, we have not
been able to factor it into contributions due to a hierarchy of
σ-type strings. Thus the full Bethe ansatz solution of this
model remains a task for future work. We remark that this
model does not appear to fall under a current partial
classification of integrable cellular automatons [28,64].
Although we were unable to fully solve the model, we

could analytically establish the presence of an infinite
hierarchy of conserved charges; physically, these charges
represent the spacings between σ quasiparticles, which are
conserved. Such asymptotic spacings are also conserved in
the Rule 54 reversible cellular automaton [23,26] but do not
seem to affect the hydrodynamics of the model. However,

(a) (b)

(c) (d)

FIG. 3. Transport. (a) ac conductivity σðωÞ. Note that ω ¼ π
features a prominent peak indicating a π Drude weight and that
we also have a finite nonzero value at ω ¼ 0 which suggests
diffusive behavior. (b) Behavior of the Kubo correlator CJJðtÞ þ
CJJðtþ 1Þ which is twice the average value over one period of
the oscillations in the current-current correlator. CJJðtÞ þ
CJJðtþ 1Þ falls off in a power law fashion, i.e., t−β, with β ≈
1.7 > 1 indicating the presence of a finite nonzero diffusion
constant at low frequency. (c) Behavior of the particle structure
factor Cðx; tÞ at short times and (d) Diffusive scaling collapse of
the structure factor, Cðx; tÞ ¼ t−1=2fðx=t1=2Þ with f a non-
Gaussian skewed scaling function. (a) and (b) are data averaged
over 108 realizations, and (c) and (d) are averaged over 107

realizations.
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scattering of β strings depends on spacings of σ particles in
a σ string suggesting that they might play a role in
determining the late time behavior of the FSA.
Finally, we studied transport properties in this model. We

found that the dc limit of transport is diffusive, but with an
asymmetric and non-Gaussian dynamic structure factor.
Moreover, the model features persistent current oscilla-
tions, leading to a finite-frequency delta-function peak in
the ac conductivity. A comprehensive understanding of the
transport behavior in this model should be amenable to
generalized hydrodynamics [51]. However, this would
require one to re-express the scattering data in a standard
Bethe-ansatz form; this task is currently out of reach.

We thank B. Pozsgay and B. Ware for stimulating
discussions. This work was supported by the National
Science Foundation under NSF Grant No. DMR-1653271
(S. G.), the U.S. Department of Energy, Office of Science,
Basic Energy Sciences, under Early Career Award No. DE-
SC0019168 (R. V.), and the Alfred P. Sloan Foundation
through a Sloan Research Fellowship (R. V.).

[1] O. Gunnarsson, M. Calandra, and J. Han, Colloquium:
Saturation of electrical resistivity, Rev. Mod. Phys. 75, 1085
(2003).

[2] S. Caprara, C. Di Castro, S. Fratini, and M. Grilli,
Anomalous Optical Absorption in the Normal State of
Overdoped Cuprates Near the Charge-Ordering Instability,
Phys. Rev. Lett. 88, 147001 (2002).

[3] S. Fratini, D. Mayou, and S. Ciuchi, The transient locali-
zation scenario for charge transport in crystalline organic
materials, Adv. Funct. Mater. 26, 2292 (2016).

[4] S. Fratini and S. Ciuchi, Displaced drude peak and bad
metal from the interaction with slow fluctuations., SciPost
Phys. 11, 039 (2021).

[5] G. Masella, N. V. Prokof’ev, and G. Pupillo, Anti-drude
metal of bosons, Nat. Commun. 13, 2113 (2022).
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