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Weyl medium has triggered remarkable interest owing to its nontrivial topological edge states in 3D
photonic band structures that were mainly revealed as surface modes yet. It is undoubted that the
connection of two different Weyl media will give rise to more fruitful physics at their interface, while they
face extreme difficulty in high-dimensional lattice matching. Here, we successfully demonstrate the
non-Hermitian Weyl interface physics in complex synthetic parameter space, which is implemented in a
loss-controlled silicon waveguide array. By establishing non-Hermitian Hamiltonian in the parameter
space, new Weyl interfaces with distinct topological origins are predicted and experimentally observed in
silicon waveguides. Significantly, our Letter exploits the non-Hermitian parameter to create the synthetic
dimension by manipulating the non-Hermitian order, which successfully circumvents the difficulty in
lattice matching for high-dimensional interfaces. The revealed rich topological Weyl interface states and
their phase transitions in silicon waveguide platform further imply potentials in chip-scale photonics
integrations.
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Topological photonics has triggered considerable
interest in realizing symmetry-protected edge states that
imply potential applications in robust photonics integra-
tions [1,2]. In recent years, in pursuit of richer physics
people has paid more attention to higher-dimensional
topological systems, where the 3D photonic analog of
topological semimetal gives rise to the photonic Weyl point
(WP). The WP is a degeneracy point of 3D band structure
with linear dispersion in the momentum space, and has
attracted increasing attention with the emergence of topo-
logical modes known as the Fermi arc surface states [3–13].
Specially, a broad range of interest has been reignited
in connection with non-Hermiticity that demonstrates
complex Weyl structures and unconventional topological
effects [14–20]. For example, the non-Hermiticity would
expand the Berry charge of the WP out onto a Weyl
exceptional ring (WER) that shows completely distinct
topological properties inside and outside the ring [14]. A
pioneering experimental work has demonstrated the WER
in helical waveguide arrays, and the non-Hermitian
Fermi arc state is observed at the surface of a single
Weyl medium [20]. However, connecting two media with
distinct topological order will undoubtedly indicate more
flexible topological channels (like domain walls) for light
guiding, splitting, and robust light sources [21–25], etc.
Following the trend from low to higher dimensions, it is
quite promising to explore the domain walls formed by two

independent non-Hermitian Weyl media, which, however,
remains extremely challenging due to the difficulty in
higher-dimensional lattice matching.
Fortunately, the newly emerging synthetic dimension

shows a powerful way to manipulate the topological order
by squeezing higher dimensions to lower ones [26–34],
which provides new possibilities to explore Weyl
physics [35–39]. One powerful approach for creating a
higher-dimensional Hamiltonian is to utilize the parameter
degrees of freedom,which can bemapped onto the synthetic
momentum dimension in a Hamiltonian [29,36–39].
Recently, the parameter space is introduced in acoustics
systems with gain or loss modulation to explore the
WER [39], which focuses on a single Weyl structure. In
that work [39], the parameter spaces are formed based on
parameters in a Hermitian Hamiltonian, while the parameter
associated to non-Hermitian contributions is treated as an
additional term or perturbation on the original Hermitian
system. In fact, the non-Hermitian parameter can be viewed
as a new degree of freedom to control the interface modes
[40–48]. It is of fundamental importance to extend the
synthetic dimension by utilizing non-Hermitian parameters,
which may empower people to flexibly manipulate the non-
Hermitian order [49] in a topological system and provide
new possibilities in inspecting non-HermitianWeyl physics.
In this Letter, we investigate non-Hermitian Weyl inter-

face states in a silicon waveguide array platform, where the
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loss is controlled by the covered chromium (Cr). By
synthesizing the waveguide widths, positions, and loss
(deposited Cr) together, we propose a complex synthetic
parameter space, where the Weyl degeneracies (WP and
WER) are demonstrated. In particular, the non-Hermitian
parameter (i.e., the arrangement of lossy components) has
been taken to construct the synthetic dimension. In such
complex synthetic parameter space, new interface Weyl
states are discovered between two non-Hermitian struc-
tures, which can be distinguished by their locations at the
synthetic space. We further design and fabricate the non-
Hermitian silicon waveguide array in experiments, and
observe the interface states in near-infrared wavelength.
Our Letter exploits the non-Hermitian parameter to create
the synthetic space and hence manipulate the non-
Hermitian order, which demonstrates new Weyl interface
states with solid confirmation in on-chip silicon waveguide
experiments.
Figure 1(a) shows the schematics of the Si waveguide

array with Cr stripes that follows a sinusoidal trajectory
xðzÞ ¼ A sinð2π=Pzþ φÞ, where A, P, and φ are
the bending amplitude, period, and initial phase. The cross
section of a unit cell is shown at the bottom in
Fig. 1(a), which consists of two waveguides with the
widths defined as w1 ¼ wcð1þ lÞ, w2 ¼ wcð1 − lÞ, the
gaps d1 ¼ d1cð1þ f1nÞ, d2 ¼ d2cð1 − f2nÞ, and the lattice
constant Λ ¼ 2wc þ d1c þ d2c. Here, wc ¼ 0.4 μm,
fi ¼ ðd1c þ d2cÞ=2dic, where d1c ¼ 0.480 μm, and
d2c ¼ 0.193 μm (gives alternating negative and positive
couplings of the same strength with A ¼ 0.68 μm and
P ¼ 10 μm, see Supplemental Material S1 [50]). The
widths of the Cr are defined as wCr1 ¼ wCrcð1þmÞ,
wCr2 ¼ wCrcð1 −mÞ. Overall, l, m, and n are three inde-
pendent numbers within ½ − 1; 1�. l and n are two Hermitian
parameters modulating the propagation constant and cou-
pling coefficient, while m corresponds to the loss for the
non-Hermiticity [54,55]. We can regard l and n
as two Hermitian parameter spaces and m as the non-
Hermitian parameter space, and when incorporating the 1D
Bloch wave vector k along the transverse direction x, they

construct a complex synthetic-reciprocal space ðl; m; n; kÞ.
For a straight waveguide array, a twofold degenerate point
appears at ðlc; mc; nc; kcÞ ¼ ð0; 0; 0; π=ΛÞ [56]. By curving
the waveguides, the alternating positive and negative
coupling can shift the degenerate point to the center of
the Brillouin zone ðlc; mc; nc; kcÞ ¼ ð0; 0; 0; 0Þ, which
makes it easier to realize the eigenmode [57–61] (see
Supplemental Material S1 [50]).
We define four dimensionless coefficients δl ¼ l − lc,

δm ¼ m −mc, δn ¼ n − nc, and δk ¼ ðk − kcÞ=k0
(k0 ¼ π=Λ) in the following derivation. By employ-
ing the tight-binding approximation, the Hamiltonian
writes

H ¼ ½β1ðδlÞ þ iγ1ðδmÞ�
X

j

a†1;ja1;j þ ½β2ðδlÞ þ iγ2ðδmÞ�
X

j

a†2;ja2;j

þ κ1ðδnÞ
X

j

ða†1;ja2;j þ a†2;ja1;jÞ þ κ2ðδnÞ
X

j

ða†1;jþ1a2;j þ a†2;ja1;jþ1Þ; ð1Þ

where β1ð2ÞðδlÞ and γ1ð2ÞðδmÞ are the propagation constant
and loss of the waveguides, respectively. κ1ð2ÞðδnÞ repre-
sents coupling coefficient. Upon Fourier transformation
and expanding H with respect to ðδl; δm; δn; δkÞ up to the
first order, we finally get the effective Hamiltonian (see
Supplemental Material S1 [50]):

H ¼ cδnσx þ K0δkσy þ ðbδlþ iaδmÞσz þ ðβ0 þ iγ0Þσ0;
ð2Þ

where σx, σy, and σz are Pauli matrices, σ0 is a
2 × 2 identity matrix. K0 ¼ k0Λκ0, β0 ¼ 8.84445 μm−1,
κ0 ¼ 0.01 μm−1, γ0 ¼ 0.02 μm−1, b ¼ 6.29321 μm−1,

FIG. 1. (a) Schematics of the Cr-deposited curved silicon
waveguides and the cross section of the unit cell. (b) Band
structures in the δl − δn synthetic space with δk ¼ 0 for the
Hermitian case. The WP is marked by the red dot. (c) Real part of
the spectrum on δk − δn space at δl ¼ 0 in the non-Hermitian
system. A WER is identified and marked by the red circle. The
inset shows the corresponding imaginary part. (d) The same
system viewed on δl − δn space with δk ¼ 0. The two EPs are
marked by the pentagrams.
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c ¼ 0.123 μm−1, and a ¼ 0.01991 μm−1. This Hamilto-
nian is a non-Hermitian variant of the standard Weyl
Hamiltonian [14,20], which contains four real parameters:
the momentum δk and parameters of δl, δm, and δn to
mimic the synthetic momenta. Figure 1(b) shows the
projection of the bulk bands in the ðδl; δnÞ space in the
Hermitian limit (δm ¼ 0). The degenerate point is a WP
and its charge can be determined as sgn (cK0b). If δm ≠ 0,
the non-Hermiticity is introduced that spawns the excep-
tional points (EPs) from the WP. Specifically, the WP
morphs into a continuous closed trajectory on the δK − δn
plane, at which the real and imaginary parts of the
eigenvalues are identical [Fig. 1(c)]. This circled trajectory
is a Weyl exceptional ring (WER). Figure 1(d) shows the
bands on the δl-δn cut plane at δk ¼ 0, which intersect the
WER at the two EPs marked by the pentagrams.
Different from previous works where the non-Hermitian

parameter is considered as an additional perturbation
[14,15,20,39], here we treat the non-Hermitian parameter
δm as a new synthetic dimension and inspect the spectrum
in the δl-δm space [see Fig. 2(b)]. Along the δm axis,
the real part of the spectrum ReðkzÞ is gapped for
−j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcδnÞ2þðK0δkÞ2
p

=aj< δm< j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcδnÞ2þðK0δkÞ2

p
=aj

and ungapped for jδmj > j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcδnÞ2 þ ðK0δkÞ2

p
=aj. There

are two EPs at ½0;�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcδnÞ2 þ ðK0δkÞ2

p
=aj� with opposite

chirality separating the gapped and ungapped δm
domains [62] [marked by pentagrams in Fig. 2(b)].
Tuning in the non-Hermitian parameter space δm gives
rise to new Weyl states, as will be shown later.
After successfully mapping the high-dimensional non-

Hermitian Weyl Hamiltonian into the 1D lossy waveguide
array, we would like to construct a controllable interface
between two Weyl structures. A rotational sphere around
the Weyl degeneracy in the δl − δm − δn parameter spaces
is introduced [see Fig. 2(a)]:

δl ¼ δl00 sin θ cosϕ≡ δl0 cosϕ;

δm ¼ δm0
0 sin θ sinϕ≡ δm0 sinϕ;

δn ¼ δn00 cos θ≡ δn0; ð3Þ

where θ and ϕ ∈ ½0; 2π� are the polar and azimuthal angles
of the parameter sphere, respectively, and δl00, δm

0
0, δn

0
0 are

the radii. Each point on the sphere represents a Weyl
medium with specific parameters. Consider an interface
between two Weyl media (i.e., δlI, δnI, δmI for medium I,
and δlII, δnII, δmII for medium II). According to Eq. (3), if
δl0, δm0, and δn0 are fixed, the two Weyl media can be
solely defined by ϕI and ϕII for medium I and II,
respectively. In fact, ϕ describes the projected loop on
the δl − δm plane, as shown in Fig. 2(b). Numerical
calculations are carried out for the interfaced synthetic
Weyl structure, in which δl0 ¼ 0.001, δm0 ¼ 1,
δn0 ¼ 0.01, and the number of unit cells is set as 40 on
each side. The eigenvalue spectrum as a function of ϕI
demonstrates interface modes for ϕII ¼ ϕI þ π [Fig. 2(c),
top, red and blue curves], while none for ϕII ¼ ϕI
[Fig. 2(c), bottom]. The emergence of the interface modes
can be intuitively explained in that varying ϕII and ϕI
modulates the “mass” term [1,62] in the Hamiltonian H
[i.e., bδlþ iaδm in Eq. (2)], which is complex and denotes
the real mass (bδl) and the imaginary mass (aδm). Notably,
the case ϕII ¼ ϕI gives rise to the same mass (δlI ¼ δlII and
δmI ¼ δmII) for the two media, while ϕII ¼ ϕI þ π leads to
sign-reversal for the mass, which ensures the emergence of
the interface modes [1,63,64]. Specifically, for ϕI ¼ 0 case
(i.e., δlI ¼ −δlII, δmI ¼ δmII ¼ 0), which is analogous to
having sign-reversed real mass (i.e., the conventional
topological order), there is an interface mode inside the
band gap corresponding to the Fermi arc like topological
states generated by the WP. For the case of ϕI ¼ π=2 (i.e.,
δlI ¼ δlII ¼ 0, δmI ¼ −δmII) that can be viewed as having
opposite imaginary “mass” [65–68] (i.e., reversed non-
Hermitian order), new interface modes emerge beyond the
bulk bands in the absence of a band gap. In fact, they are
generated via the EP and described by invariants called
vorticity [69]. The corresponding waveguide schematics
and interface mode distributions are shown in Fig. 2(d).

FIG. 2. (a) Rotational sphere in δl − δm − δn parameter spaces.
(b) Real part of the band structures in δl − δm space. The EPs
with opposite chirality are marked by the red and blue penta-
grams. A projective rotational loop is introduced, where ϕI and
ϕII are rotational angles that define the two synthetic Weyl media
(I and II). Bottom: the positions of the twoWeyl media at δl − δm
space for ϕI ¼ π=2 and ϕII ¼ ϕI þ π. (c) Real part of the
eigenvalue spectra as a function of ϕI for loops in (b), with ϕII ¼
ϕI þ π (top) and ϕII ¼ ϕI (bottom). The red and blue curves are
the interface modes and gray bands represent the bulk. (d) Sche-
matics of the waveguide structure and field distributions (real part
of the complex amplitude) of the interface states [marked by red
and blue triangles in (c)]. The black dashed line indicates the
interface and four central waveguides are enlarged.
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More discussions on the topological origins of the
Weyl interface states are provided in Supplemental
Material S2 [50].
Note that we have defined the two Weyl media with the

same radii (δl0, δm0, and δn0) in the parameter sphere,
while only ϕ varies. However, the radii can also be tuned to
be different. It has been theoretically proven that the WER
shows completely distinct topological properties between
inside and outside the ring [14,20], while the interface
mode when interfacing a medium inside a WER with one
outside a WER has not been observed by far. Inspired
by it, two rotational loops are selected in the δl − δm
parameter space with different radii, e.g., aIδm0I ¼ 0.005,
aIIδm0II ¼ 0.015, so that Weyl medium-I rotating inside
two EPs has gapped spectrum [Fig. 2(b)] corresponding to
outside the WER, while Weyl medium-II rotating enclosing
two EPs is ungapped and thus inside the WER [see
Fig. 3(a)]. Figures 3(b) and 3(d) show the real and
imaginary parts of eigenvalue spectra as a function of
rotating angle ϕI (ϕI ¼ ϕII), respectively. As expected,
Weyl medium-I (outside the WER) has nontrivial gapped
real spectrum (gray bands) and supports a localized Fermi
arc like edge state (red curve) generated by the nontrivial
Berry charge of the WER, while the real spectrum of the
Weyl medium II (inside the WER) is gapless (brown
bands). The edge mode reemerges as an interface state
with the lowest loss in the vicinity of ϕ ¼ π=2 [see
Fig. 3(d)], which cannot couple to both bulk bands
due to the topological band gap of medium I and

non-Hermiticity-induced decoupling with medium II (see
Supplemental Material S2 [50]). In short, this interface
mode is fundamentally generated by Berry flux emitting
from the WER, and the non-Hermitian phase transitions
crossing the WER guarantee the localized propagation of
the interface modes, which can emerge even without mass
transition (ϕI ¼ ϕII). As a consequence, this interface state
shows different features (asymmetric) compared to the
interface modes with mass transition (symmetric) [see the
mode distributions and corresponding waveguide sche-
matics in Fig. 3(c)], which can be explained that these
two Weyl media have different mass weights. These results
give a new cognition to the origin of the non-Hermitian
induced edge states [40,41,45–47].
In experiments, different Weyl media are constructed by

controlling the silicon waveguide widths, Cr widths, and
waveguide gaps. Specifically, three kinds of samples were
fabricated corresponding to imaginary mass transition case,
crossing WER case, and trivial Hermitian case (removing
Cr) for comparison [see Figs. 4(a)–4(c)]. The imaginary
mass transition corresponds to reverse the Cr width order at
the interface, while the order remains the same but the two
media have different Cr width contrast for the case crossing
the WER. The experimental details including sample
fabrication, measurement, and structure parameters are
provided in Supplemental Material S3 [50]. We input
the 1550 nm laser into the center of the three samples
through a grating coupler and capture the output signals
[see Figs. 4(e), 4(h), and 4(k)]. Numerical propagation
simulations are also performed [see Figs. 4(d), 4(g), and
4(j)]. We extract the simulated output intensity (propaga-
tion length 200 μm) and display them in Figs. 4(f), 4(i), and
4(l) (green bar) along with experimentally measured
intensity profiles (orange bars).
For the case with imaginary mass transition, we input

the light from the central two waveguides according to
the maximum-weighted field of the interface mode [see
Fig. 2(d)]. Figure 4(d) shows the simulation result with a
strong field confined around the interface, which is in good
agreement with the experiments [see Figs. 4(e) and 4(f)].
For the case crossing WER, we choose the central wave-
guide as the input. The simulation in Fig. 4(g) indicates an
overall interface mode, although some fields penetrate into
the bulk. This small penetration should attribute to the
discrepancy of the input field from the exact eigenmode
profile [see Fig. 3(c)]. In Figs. 4(h) and 4(i), both the
experiment and simulation exhibit a power maximum
around the interface, which shows good coincidence with
the theory prediction. For the trivial Hermitian case, the
optical fields spread out into the bulk of the structure,
showing no localized modes at the interface [Figs. 4(j)–
4(l)]. More experimental data and further discussions about
the robustness are provided in Supplemental Material S3
and S4 [50].

FIG. 3. (a) Two rotational loops of different sizes are introduced
in δl − δm spaces, where ϕI and ϕII are azimuthal angles that
define the two synthetic Weyl media (I and II). Weyl medium I
and II (blue and red dots) are outside and inside the WER (red
circle). The real (b) and imaginary (d) part of the eigenvalue
spectra for loops in (a) with ϕII ¼ ϕI. The red curve represents
the interface mode. (c) Schematics of the waveguide structure
and field distributions of the interface states at ϕI ¼ π=2.
Here, aI ¼ 0.00576 μm−1, aII ¼ 0.02247 μm−1, δl0 ¼ 0.001,
and δn0 ¼ −0.05.
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In summary, we have explored the Weyl interface states
in the Cr-deposited curved silicon waveguide array by
imparting one non-Hermitian parameter space. Such a
system can build high-dimensional Hamiltonians including
non-Hermitian synthetic momenta with respect to the non-
Hermitian order, and hence provides new possibilities to
control the interface modes. New types of Weyl interface
states are revealed, which are explained by sign-reversed
imaginary mass (reversed non-Hermitian order) and phase
transition crossing the WER with the same-sign mass. All
of these results have been successfully observed in Si
waveguide experiments, which show good agreement with
the theory. The successful realization in the Si platform also
indicates the possibility of non-Hermitian light manipula-
tion for compact integrations. Moreover, our Letter extends
the category of synthetic dimension with non-Hermiticity,
which has demonstrated the powerful capability in tailoring
the non-Hermitian order and promises further explorations
in non-Hermitian and higher-dimensional physics.
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