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Identification, and subsequent quantification of quantum correlations, is critical for understanding,
controlling, and engineering quantum devices and processes. We derive and implement a general method to
quantify various forms of quantum correlations using solely the experimental intensity moments up to the
fourth order. This is possible as these moments allow for an exact determination of the global and marginal
impurities of two-beam Gaussian fields. This leads to the determination of steering, tight lower and upper
bounds for the negativity, and the Kullback-Leibler divergence used as a quantifier of state nonseparability.
The principal squeezing variances are determined as well using the intensity moments. The approach is
demonstrated on the experimental twin beams with increasing intensity and the squeezed super-Gaussian
beams composed of photon pairs. Our method is readily applicable to multibeam Gaussian fields to

characterize their quantum correlations.
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Quantum theory allows for correlations between spatially
separated systems or degrees of freedom that are fundamen-
tally different from their classical counterparts. For
composite systems, quantum correlations (QCs) manifest
themselves in many different (inequivalent) forms [1-4],
including the Bell nonlocality, quantum steering, and entan-
glement. They can be exploited to achieve qualitatively better
performance in information processing tasks compared to
purely classical scenarios. Though the question of which
kind of QCs is a necessary resource for a given quantum
information protocol remains still open, particularly when
multipart systems are considered, the analysis of QCs among
different subsystems is extraordinarily important [5,6]. It
belongs to fundamental problems in quantum information
science and quantum many-body physics at present.
Applying very general quantum theories and models, the
structure of QCs is elucidated and nontrivial limitations on
the strength of physically allowed QCs are revealed.

Over the years, several methods for the analysis of QCs
have been proposed based on, e.g., the violation of various
inequalities [7-10], geometrical considerations [11], or even
interference among multiple copies of the investigated
state [12-14]. However, such methods usually require
certain initial knowledge about the analyzed state density
matrix, which is never experimentally acquired without
technical difficulties. Similarly, the homodyne tomogra-
phy [15] in quantum optical experiments with continuous-
variable states, which provides the complete characterization
of the detected field, has to rely on a coherent local
oscillator with the varying phase [16]. Contrary to this, we
routinely measure the photocount distributions in numerous
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experiments by photon-number-resolving detectors [17].
So it is very important to develop methods allowing to
extract the maximum information about QCs in the analyzed
field using just these photoncount distributions. While
there are numerous nonclassicality witnesses at our dis-
posal [18-20], revealing the structure of QCs represents a
much more complicated task. Several schemes for solving
this problem have already been suggested using, however,
some form of homodyning of the analyzed field [21-23].
Interestingly, an exact copy of the analyzed state can be used
in a suitable interferometric setup [13] instead of a local
coherent oscillator of the homodyne scheme to reveal all four
invariants of a two-beam Gaussian field, which is equivalent
to the determination of all elements of its covariance matrix.

In this Letter, we address this problem for a wide group of
in-practice important Gaussian fields. We propose a scheme
based solely on the intensity moments of optical fields to
estimate their global and marginal purities. Although the
photocount measurements do not allow for the determina-
tion of all coefficients characterizing such Gaussian fields
(information about the phases of complex coefficients is
missing), the needed information can partly be inferred from
the values of higher-order intensity moments [24]. In our
scheme, both the global and marginal field purities are
expressed in terms of higher-order intensity moments. This
opens the door for direct determination of important QC
quantifiers, involving the Rényi-2 entropy, Kullback-
Leibler divergence, one- and two-way Gaussian steering,
and even tight lower and upper bounds for the logarithmic
negativity. Also, the squeezing of Gaussian states can be
determined. In practice, direct measurements of the intensity
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moments of optical fields are standardly performed using
various types of photon-number-resolving detectors includ-
ing intensified CCD cameras [25,26] or superconducting
bolometers [27], to name a few. This makes our scheme
qualitatively simpler compared to those based on various
forms of homodyning. Using two-beam states originated in
parametric down-conversion, we experimentally demon-
strate the suggested approach.

Purity estimation of Gaussian fields.—We begin with
defining the normal characteristic function C (S, f5,) [24]
for general single-mode two-beam fields,

CN<ﬁ1,ﬁz>=<exp[Zﬂ,aj] exp[—Z ;&,D, (1)

j=12 j=12

where a; (&j) stands for the annihilation (creation) operator
of beam j, j = 1,2, and (- - ) denotes quantum-mechanical
averaging. For quantum Gaussian fields the characteristic
function C(f3;, ) takes the form [24]

Cy(B1. 52,51, 53) =exp [— Z [BjlB;I*+ (C;B;7 /2 +c.c.)]

j=12

+ (D ofip5+ Diapifs +c.c.) (2)

with real (B;) and complex (C;, Dy, Djk) parameters
characterizing the Gaussian state; c.c. replaces the com-
plex-conjugated terms.

The measured intensity moments (WXW?), given as the
normally ordered photon-number moments and obtained
via the Stirling numbers from the measured photon-number
moments [24], contain partial information about the state
parameters:

k+1 aZ(kJrl)CN(ﬂl’ﬂZvﬁT’ﬁ;)
akﬁlak(ﬂT)alﬂ2al<ﬂ§) Pi=...= ;:0.

(3)

Considering the intensity moments up to the second
order, we reveal the following relations for the looked-for
parameters:

(Wiws) = (=1)

Bj = (W;).
ICi|* = (W3) =2(W))*, j=1,2,
D1 + [Dio|* = (Wi W) — (W) (Ws). (4)

The third-order intensity moments give us additional
information about the looked-for parameters:

—4R{C\ D, D}, } = —4(W ) (W W,) — (W) (W,
+ (WiW,) — (W) (W2),

—4R{C5D 1, D1} = —4(Wo) (W Wy) — (W )(W2))
+ (W W3) — (W) (W3). (5)

)

We note that, alternatively, the expressions in Eq. (5) can be
obtained from the third-order moments <W}°’> j=1,2or
even fourth-order moments (W3W,) and (W, W3). Finally,
also the fourth-order intensity moment (W3W3) reveals a
useful relation among the looked-for parameters,

42D, PID1o* +R{C, C5DT, } +R{C, C5(D},)*})

= (WiW3) —4(W W) = (W (W) (W Wa)+(W ) (W)?
=2[(W1)2((W3) =2(W2)?) +(W2)> (W) —2(W,)?)]
= ((W3) =2(W2)?) (W) —2(W1)?)
+16(W)R{C1D1,D},} +16(W1)R{C5D ;D12 ). (6)

Surprisingly, Eqs. (4)—(6) are sufficient to obtain the global

and marginal purities of the two-beam Gaussian fields. In
order to show that, we need to know the corresponding

covariance matrix o = (E€') — (€)(€") containing the sec-
ond-order moments of the position %; = (a; + &;) /2 and
momentum p; = (a; — &;)/ (2i) operators embedded in

vector & = (X1, p1, %2, P2)- Using the parameters of the
normal characteristic function C), in Eq. (2), the covariance
matrix ¢ is expressed as

o= ["; 4 ] (7)
where
14 2B, +20{C;}
% { 23{C;}

_ {23{{1912 — Dy}
23{D1, + D11}

23{C;} }

1+2B; -2R%{C;} |
23{Dy, - D_lz} ] (8)

—2R{Dy, + D1p}

Now, one can easily verify that the determinants of the

global ¢ and local Gj, j =1, 2, covariance matrices are
given in terms of the intensity moments as

deto = 1 +4((Wy) + (W2)) + 12((Wy) + (W1))* = 4(WT) (1 + 6(W) + 24(W,)?) — 4(W3) (1 + 6(W,) + 24(W,)?)
+ 8(WiW2) (1 4 6(W2)) + 8(W  W3)(1 + 6(Wy)) = 8(W  W1) (1 + 6(W,) + 6(W,) + 48(W,)(W>))
+96(W 1 ) (W) ((W1) + (Wa) + 5(W,)(Wy)) +24(WT)(W3) — 8(WiW3) + 48(W, W)?, ©)

deto; = 1+ 4(W)) + 12(W;)> —4(W3), j=1.2. (10)
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Knowing these determinants, the corresponding purities
p = 1/(dets)"/? and u; = 1/(dets;)!/? are established [1].
Contrary to this, seralian A, the last of four global invariants
of two-beam Gaussian states, requires y to be determined,
A = deto; + deto, + 2dety [3,28].

This central result allows us to determine various
quantities that characterize the structure of two-beam
QCs [29-32]. Using the purities y and p;, j =1, 2, we
immediately obtain the Rényi-2 entropies along the formula
Sg = —1In(u) [31]. We note that Sy represents the con-
tinuous analog of the Shannon entropy. The Rényi-2
entropy Sy can then be used to quantify the total quadrature
correlations via the Kullback-Leibler divergence (distance)
H between the analyzed two-beam state p and its factorized
counterpart Tr,{p}Tr;{p} [31]:

H—SR,1+SR.2—SR_ln<L>. (11)
Hil2

Also the degree of (one-way) Gaussian steering of beam 2
by beam 1 [30] is expressed in terms of purities [32]:

Gy = max{0,In(u/p)}. (12)

We note that two-way steering occurs provided that both
G,_, and G,_,; are nonzero.

Using purities, even the logarithmic negativity Ey [29],
giving the degree of entanglement revealed, e.g., by the
Simon criterion [33], is established through its tight lower
and upper bounds derived by Adesso et al. [34]:

1 L+
E — —ln|--
ms(p) = =5 In u+<2u?ﬂ§
4/42ﬂ2
X<M1+M2—\/(ﬂ1+ﬂz)2—;2 :
1 1 1 1 1
Enin(p) = —51n y%+y_§_2_yz_§

1 1 I 1\2 1

\/ AT 2) /421' 13)

Application to experimental data.—We tested the
derived formulas on a set of the experimental spatiospec-
trally multimode twin beams (TWBs) [35] with increasing
intensity [for mean photon number (n;) of beam 1, see
Fig. 1(a)] that were obtained by adding the photocounts
registered by two single-photon counting modules posi-
tioned in the signal (1) and idler (2) beams in subsequent
detection windows (for details, see Supplemental Material
[36] and [37]). The TWBs at 710 nm originated in type-I
parametric down-conversion in a LilO; nonlinear crystal
pumped by the third harmonic of an Nd-YAG laser at
355 nm. We arrived this way at the compound multimode
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FIG. 1. (a) Mean photon number (n;) of beam 1 (red A).

(b) Entropy S™/M per mode (red A). (c) Rényi-2 entropies
per mode S% /M and S3 /M for beam 1 (red A) and beams 12
(green o), respectively. (d) Kullback-Leibler divergence per mode
H"/M and its values for noisy TWBs (blue x). (e) Steering
parameter per mode G'5/M (red A) and its values for noisy
TWBs (blue *). (f) Lower (red A) and upper (black +) bounds for
negativity per mode E% /M and its values for noisy TWBs (blue
x) as they depend on the number N of grouped detection
windows; M = 10N (for details, see Refs. [36,37]). In (a) and
(b) error bars are smaller than the plotted symbols. In (f), red A
and black + nearly coincide. The solid blue curves originate in a
model of M identical independent single-mode two-beam Gaus-
sian fields with suitable parameters.

TWBs with mean photon numbers extending over 2 orders
in magnitude (from 0.1 to 10 mean photons per beam). The
experimental photocount histograms were reconstructed by
the maximum-likelihood approach to obtain the joint
photon-number distribution p(n;,n,) and its photon
number moments (nynb),, = 3% _oninyp(ny,ny). Also
entropy S of the fields was determined along the for-
mula § = =35 _p(ny,n,y)In[p(n;,ny)| and plotted in
Fig. 1(b). The intensity moments, that are the normally
ordered photon-number moments, were then derived as
linear combinations of photon-number moments using the
Stirling numbers of the first kind [18].
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We note that, when correcting the experimental data for
nonunit detection efficiencies #; and #,, the use of any
reconstruction method is not required. We may simply
determine the intensity moments (WXW)) . directly from
the detected photocount histogram and derive the needed
intensity moments as (WAW2) = (WAW2) ./ (7¥n}). On the
other hand, reconstruction methods allow us to correct also
for other detector parameters like dark-count rates, cross
talk, etc. In real experiments, sufficiently large detection
efficiencies are needed to arrive at acceptably low errors in
the determination of the reconstructed intensity moments.

These experimental beams are multimode as they are
generated in parametric down-conversion in the running-
wave configuration and detected in multiple detection
windows. They also suffer from imperfections that occur
both during the generation process and transmission to the
detectors. As a consequence, they decline from the theo-
retically expected form of a multimode noisy TWB whose
coefficients obey C; = C, = D, = 0 in Eq. (2). These
declinations can be quantified using the derived formulas
for the tested quantum information quantities. However,
these quantities are derived for two single-mode Gaussian
beams and so their application is conditioned by the
reduction of the experimental multimode photon-number
moments (nfnb), to one typical mode in each beam.
Estimating the number M of effective modes in each beam
[20,38], we may follow the procedure outlined in the
Supplemental Material [36].

We compare the values of the obtained quantities per
mode with those characterizing a single-mode Gaussian
noisy TWB [39], that is fully characterized by three first- and
second-order photon-number moments (B; = (w;) = (n;),
[D1o* = (wiwa) = (wi)(wy) = (miny) = (ny)(ny)).  For
the formulas, see Supplemental Material [36].

According to the experimental results reduced to one
mode and plotted in Figs. 1(c)-1(f), the Rényi-2 entropies
S% /M, the Kullback-Leibler divergence H™ /M, the neg-
ativity EY;/M as well as the steering parameter G, /M do
not considerably change with the increasing field intensity,
i.e., the increasing number N of grouped detection win-
dows (M = 10N).

As the values of Rényi-2 entropy S% of the two-beam
fields are smaller than the entropies S% ; and S%, of the
constituting signal and idler beams [see Fig. 1(c)], the
purities of the two-beam fields are greater than those of
the constituting beams. This implies, according to the
general classification of two-beam Gaussian states (see
Table I in [40]), that the analyzed two-beam fields are
entangled.

The experimental values of H} /M, G',,/M, and E}; /M
reduced per one mode and determined by the derived
formulas (11)—(13) are systematically greater (by approx-
imately 10%—20%) than those characterizing the Gaussian
noisy TWBs (determined by the formulas in the
Supplemental Material [36]). This means that the states

of the detected two-beam fields are more general than those
of the Gaussian noisy TWBs with the vanishing coefficients
C,, C,, and Dy,. The consideration of the experimental
third- and fourth-order intensity moments reveals that also
the complex parameters (C;, C,, and D,,) of the detected
two-beam Gaussian fields are nonzero, which leads,
according to our results, to stronger QCs described by
the above quantities. We note here, that our results do not
allow us to judge the declination (non-Gaussianity) of the
analyzed state from the general form of Gaussian states as
described by the characteristic function in Eq. (2).

The Kullback-Leibler divergence HY, the steering
parameter G7',,, and the negativity E} of the two-beam
fields increase practically linearly with the increasing TWB
intensity. This contrasts with the behavior of the entropy S
of the two-beam fields whose increase is smaller: The
entropy S™ /M per mode plotted in Fig. 1(b) decreases with
the increasing TWB intensity. This means that the capacity
of available QCs increases linearly with the dimensionality
(number of modes M) of the analyzed fields. The capacity
of QCs thus grows faster than disorder in the analyzed
fields quantified by the entropy S™.

We note that nonzero negativity EY and the Kullback-
Leibler divergence H are obtained also directly for the
experimental photocount histograms, i.e., without recon-
structing the experimental data. This contrasts with the
steering parameters G{',, and G%',, being zero in this case.

The negativity E)y is the most commonly used parameter
to quantify QCs. However, we have only the lower and
upper bounds in Eq. (13) at disposal for single-mode two-
beam Gaussian fields. Nevertheless, the experimental data
plotted in Fig. 1(f) show that these bounds are very close to
each other: The uncertainty in determining E is practically
given only by the experimental errors. This observation is
valid in general. Indeed, from the point of view of the
entanglement, two-beam Gaussian states are divided into
groups of states with identical amount of Ej. These groups
are parameterized by four parameters: purities y, u;, u,, and
seralian A. The minimal and maximal values of the
negativity Ey given in Eq. (13) in fact represent the
extremal values with respect to seralian A for fixed values
of the purities. The general behavior of these extremal
values can conveniently be quantified taking into account
that the negativity E, increases (decreases) with the
increasing global purity p (marginal purities y; and p,).
This suggests the ratios y/u;, j = 1, 2, as suitable param-
eters for quantifying the uncertainty in the determination of
E\y: The greater the ratios are, the greater the negativity Ey
is. This is documented in the graph of Fig. 2(a) where the
negativity E%y averaged over the states with fixed ratios
u/uy and p/p, is plotted. The maximum of the relative
error OEG™ [34],

max min
EN - EN

OEN = Tmax o~ pun-
Ey™ + Ex

(14)
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FIG. 2. (a) Average negativity £} and (b) maximum SEJ** of
relative error as they depend on ratios p/u; and p/ i, . In the white
areas no entangled states exist. For y; = u,, see also in [32].

taken over the states with the fixed ratios p/u; and u/u, is
then shown in Fig. 2(b). According to Fig. 2(b), the relative
error 6Ey is smaller than 10% (1%) when the ratios u/u;
are greater than 1.5 (2.5), i.e., when the states exhibit
considerable entanglement. This makes the use of the
bounds for negativity Ey very efficient.

Single beam properties.—The approach presented above
for two-beam Gaussian fields is applicable also to single-
beam Gaussian fields. The intensity moments allow us to
determine the principal squeezing variance [41,42] in this
case. Merging the intensities of the signal and idler beams
of the above discussed two-beam fields, we arrive at single-
beam super-Gaussian fields with phase fluctuations
reduced below the shot-noise limit, as discussed in detail
in the Supplemental Material [36].

Further extension and application.—Our results also
allow for the analysis of QCs of general n-beam Gaussian
states. This is so as the appropriate covariance matrix is
composed of blocks of 2 x 2 matrices similar to those
written in Eq. (7) [43,44]. This allows us to analyze its
properties by considering all possible two-beam subsys-
tems of the whole n-beam Gaussian field. The formulas in
Egs. (9) and (10) hold for such subsystems and allow us to
quantify QCs in these two-beam reductions. Relying
on various monogamy relations, we may establish the
lower bound for the genuine multipartite QCs in the whole
n-beam field [31,45,46].

In conclusion, we have shown how various forms of
quantum correlations of two-beam Gaussian fields (with
spatiospectral multimode structure), that naturally depend
on the fields phase properties, can be quantified solely from
the measured intensity moments up to the fourth order. The
determination of the global and marginal purities of the
involved beams in terms of the intensity moments represents
the key step. The principal squeezing variances can solely be
derived from the intensity moments as well. We have
demonstrated usefulness and practicality of this approach
by considering suitable experimental fields. Our method is
readily applicable to multipartite systems for the detection
and characterization of their quantum correlations. As the
Gaussian states are exploited in numerous metrology appli-
cations and quantum-information protocols with continuous

variables, we foresee numerous applications of the sug-
gested and demonstrated method in the near future.
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