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Scattering amplitudes in quantum field theory are independent of the field parametrization, which has a
natural geometric interpretation as a form of “coordinate invariance.”Amplitudes can be expressed in terms
of Riemannian curvature tensors, which makes the covariance of amplitudes under nonderivative field
redefinitions manifest. We present a generalized geometric framework that extends this manifest covariance
to all allowed field redefinitions. Amplitudes satisfy a recursion relation to all orders in perturbation theory
that closely resembles the application of covariant derivatives to increase the rank of a tensor. This allows us
to argue that tree-level amplitudes possess a notion of “on-shell covariance,” in that they transform as a
tensor under any allowed field redefinition up to a set of terms that vanish when the equations of motion and
on-shell momentum constraints are imposed. We highlight a variety of immediate applications to effective
field theories.
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Introduction.—It is well known that scattering ampli-
tudes in quantum field theory are invariant under field
redefinitions. The original demonstration of this statement
dates back to the early 1960s, where the invariance of the S-
matrix was shown for the case of “local” (no derivatives)
and “almost local” (a finite number of derivatives) field
redefinitions [1–4]. The path integral provides an intuitive
framing of this fact. Since amplitudes are computed by
performing a weighted integral over all possible field
configurations, it is appropriate to think of the field that
appears in the Lagrangian as an integration variable. This
implies that amplitudes should be independent of the way
we choose to parametrize the field, see, e.g., Ref. [5].
This invariance is often obscure at the Lagrangian level,

but may be illuminated by geometry: reformulating field
theories in terms of geometrically covariant objects can
make the invariance of observables under field redefinitions
manifest. This so-called “(constant) field space geometry”
has indeed been utilized in a variety of scenarios, as we will
summarize below. However, this approach faces a major
limitation in that it only accommodates field redefinitions
without derivatives.
Our goal in this Letter is to generalize the notion of field

space geometry to incorporate the full set of allowed field

redefinitions. The key insight is to work with suitably
defined off-shell quantities and to compute them in terms of
functional derivatives. The resulting “functional geometry”
framework allows us to identify objects that are manifestly
covariant under all allowed field redefinitions once the on-
shell conditions are enforced. In particular, suitably defined
tree-level S-matrix elements are “on-shell covariant” in
this sense.
Historically, there are three important implications of

invariance under field redefinitions that played an essential
role in the development of quantum field theory. The first is
the notion of gauge invariance, which is a special kind of
field redefinition that leaves the Lagrangian explicitly
invariant. Indeed, arguing that observables are independent
of the gauge choice for non-Abelian gauge theories was one
of the main motivations of Ref. [3]. Field redefinitions are
also extremely useful for the study of effective field theory
(EFT). For example, the primary goal of Ref. [6] was to
demonstrate that the linear and nonlinear representations of
the Goldstone fields were equivalent, which they achieved
using field space geometry. This led to the CCWZ
formulation of EFT Lagrangians for the Goldstone boson
sector of theories with spontaneously broken global
symmetries [7]. Field redefinitions were also central to
the development of more general EFTs. One is free to
use the equations of motion to write the EFT Lagrangian
with the fewest number of derivative operators, which
typically leads to a simpler form for the interactions [8].
The search for efficient ways to accommodate basis
redundancies in EFTs continues to this day.
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Geometry has been used in many guises to capture the
effects of nonderivative field redefinitions; see, e.g.,
Refs. [9–12]. It has seen something of a revival in recent
years, largely due to Refs. [10,11], which introduced a
geometric picture of the EFT for the scalar sector of the
standard model of particle physics. This so-called Higgs
EFT (HEFT) provides a generic low energy approximation
to extensions of the standard model that is expressed
directly in the electroweak broken phase of the theory.
Reference [10] further showed how to express scattering
amplitudes in terms of curvature tensors constructed from
the field space metric of the HEFT Lagrangian. This picture
has found various important applications, such as robustly
classifying which HEFTs admit linear realizations of
electroweak symmetry [13], determining the scale of
unitarity violation [14,15] for the standard model scalar
sector, providing results for low-point observables in the
standard model effective field theory to all orders in the
fields [16], and explaining the soft theorems for generalized
Goldstone bosons from a new point of view [17]. There has
also been recent progress developing related ideas in the
mathematical physics literature [18–21].
Yet the power of field space geometry to describe EFTs

is limited by its inability to accommodate derivative field
redefinitions. In this Letter, we solve this problem by
developing a generalized notion of field space geometry
incorporating the full space of allowed field redefinitions.
In particular, we construct a generalization of the field
space metric and Christoffel symbol, which will be the
essential building blocks for a novel expression of an off-
shell recursion relation for computing amplitudes, which
holds to all orders in perturbation theory. (The connection
to the famous Berends-Giele off-shell recursion [22], as
well as the Vilkovisky-DeWitt effective action [23,24], will
be made below.) This will allow us to show that amputated
position-space correlators M at tree level are on-shell
covariant in the sense that they transform under a general
field redefinition ϕðxÞ → ϕ̃ðxÞ as

M̃ðx1 � � � xnÞ ¼
δϕðy1Þ
δϕ̃ðx1Þ

� � � δϕðynÞ
δϕ̃ðxnÞ

Mðy1 � � � ynÞ

þ evanescent; ð1Þ

where “evanescent” denotes terms that vanish on-shell. The
derivations for the main results presented here, along with
some first applications, will appear in a forthcoming
companion paper [25].
Covariant amplitudes.—We begin by defining scattering

amplitudes in a way that will be useful for making their on-
shell covariance manifest. The objects of interest are the
amplitudes A that have been stripped of their LSZ residue
factors:

M̄ðp1;…; pnÞ≡ −Z−n=2
η Aðp1;…; pnÞ: ð2Þ

These objects are known to be covariant under field rede-
finitions without derivatives, see, e.g., Refs. [10,11,14]. In
this section, we will review the textbook methods for
computing them directly from the path integral using so-
called functional methods. This will allow us to show that
such (tree-level) amplitudes are covariant under general
field redefinitions, up to terms that vanish on shell,
see Sec. IV.
We begin by defining the generating functional W½J� for

a generic theory of commuting fields ηðxÞ, whose indices
(such as those of flavor and spin) we suppress. In terms of a
path integral,

eiW½J� ≡
Z

DηeiðS½η�þ
R

d4xJðxÞηðxÞÞ; ð3Þ

where Dη is the functional integration measure, S½η� is the
action defined as a functional of η, and JðxÞ is an external
source. One can extract connected correlation functions of
η from this object by taking functional derivatives with
respect to J. For example, the vacuum expectation value is
given by

ϕx ≡ hηðxÞiJ ¼
δW
δJx

; ð4Þ

where we have introduced the shorthand Jx ≡ JðxÞ and
ϕx ≡ ϕðxÞ. The propagator is

iDxy ≡ ihηðxÞηðyÞiJ;conn ¼
δ2W
δJxδJy

; ð5Þ

where h…iJ;conn denotes that this is defined for general J,
and only includes the connected contributions.
We will find it more convenient to work with the one-

particle irreducible (1PI) effective action Γ½ϕ�, which is the
Legendre transform of W½J�:

−Γ≡ Jxϕx −W; ð6Þ

and hence satisfies

δð−ΓÞ
δϕx ¼ Jx; ð7aÞ

δ2ð−ΓÞ
δϕxδϕy ¼

�
δ2W
δJxδJy

�−1
≡ −iD−1

xy ; ð7bÞ

whereDxy is the all-orders propagator. Note the summation
convention Jxϕx ¼ R

d4xJðxÞϕðxÞ.
To generate our objects of interest, we simply compute

Mx1���xn ≡ −ð−iD−1
x1y1Þ � � � ð−iD−1

xnynÞ
δnW

δJy1 � � � δJyn
; ð8Þ
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where Mx1���xn are precisely the LSZ-residue-factor-
stripped amplitudes in position space

ð2πÞ4δ4ðp1 þ � � � þ pnÞM̄ðp1;…; pnÞ

¼
Z �Yn

i¼1

d4xieipixi

�
Mx1���xn jJ¼0; ð9Þ

where we have taken all external momenta to be outgoing.
Note that the quantities Mx1���xn defined in Eq. (8) are
functionals of J, and so we must impose an on-shell
condition J ¼ 0 when going from M → A (taking J ¼ 0
is equivalent to taking the origin defined in [6]), which is
equivalent to enforcing that ϕ satisfies the η equations of
motion through Eq. (7a). Furthermore, the physical ampli-
tudes Aðp1;…; pnÞ only correspond to observables for on-
shell momenta pi, while Mx1���xn as defined in Eq. (8) are
off shell. This ambiguity is automatically removed via
Eq. (9) by contracting with the one-particle wave functions
eipixi , which are zero eigenfunctions of −iD−1

xiyjJ¼0 when
the momenta pi are on shell. This eliminates any terms
proportional to an inverse propagator that acts on a leg in
M. In summary, as far as the amplitudes A are concerned,
only the “physical” pieces ofMx1���xn contribute, which are
obtained by enforcing the following two conditions

δð−ΓÞ
δϕz ¼ Jz ¼ 0 ðequations of motionÞ; ð10aÞ

δ2ð−ΓÞ
δϕxiδϕy jJ¼0 ¼ −iD−1

xiyjJ¼0 ¼ 0 ðon-shell legsÞ: ð10bÞ

This defines what we mean by “on shell” in this Letter.
Off-shell recursion.—The definitions presented in the

previous section will naturally lead to a geometric inter-
pretation. To see this explicitly, we will use the fact that the
Mx1���xn satisfy the following tensorlike recursion relation
(derived below):

Mx1���xnx ¼
δ

δϕx Mx1���xn −
Xn
i¼1

Gy
xxiMx1���x̂iy���xn

≡∇xMx1���xn ; ð11Þ

where the notation x1 � � � x̂iy � � � xn denotes the string
x1 � � � xn with xi replaced by y. As the second line in
Eq. (11) implies, the right-hand side can be viewed as an
analog of a covariant derivative on the field configuration
space manifold, where

Gy
x1x2 ≡ iDyzMzx1x2 ¼ iDyz δ3ð−ΓÞ

δϕzδϕx1δϕx2
: ð12Þ

We can interpret the covariant derivative in Eq. (11) as
generating parallel transport on the field space manifold.

This motivates identifying Gy
x1x2 as the “functional

Christoffel symbol.” In addition, the inverse propagator
−iD−1

xy and the propagator iDxy can be viewed as the metric
and inverse metric on this manifold. (As we will discuss in
Sec. IV, Gy

x1x2 and −iD−1
xy are indeed generalizations of the

Christoffel symbol and metric on the constant field space
manifold; see Eq. (25)(26) below. As a metric, −iD−1

xy is
distinct from existing field space metrics such as, e.g., the
metric on the orbit space of Yang-Mills theory [26–28].
Note that Eq. (12) has a factor of 2 relative to the definition
of a metric connection.)
We emphasize that the recursion relation Eq. (11) holds

off shell, in particular, for general J ≠ 0, which means that
the functional Christoffel symbol Gy

xxi encodes all the
interactions in the theory, not just the cubic ones. It
can be algebraically derived from Eq. (8) by repeatedly
applying

�
δ

δJy
; iDyizi

�
¼ −ðiDywÞðiDyiwiÞGzi

wwi ; ð13Þ

see Ref. [25] for details. Since Eq. (8) holds (in principle) to
all orders in perturbation theory, the recursion relation
Eq. (11) is an all-order result. One can also understand it
from a diagrammatic point of view, where an amputated
correlator Mx1���xn (again to all orders in perturbation)
consists of tree diagrams of 1PI vertices that are glued
together by full propagators, so any term in Mx1���xn is a
product of the following two types of ingredients:

k-point 1PI vertices∶ − i
δkð−ΓÞ

δϕy1 � � � δϕyk
; ð14aÞ

ðfullÞ propagators∶ Dy1y2 : ð14bÞ

Now consider adding an additional leg to an amplitude,
labeled by x. There are three ways this can be accom-
plished. First is to connect this leg to a particular 1PI vertex

−i
δkð−ΓÞ

δϕy1 � � � δϕyk
→ −i

δkþ1ð−ΓÞ
δϕy1 � � � δϕykδϕx

¼ δ

δϕx

�
−i

δkð−ΓÞ
δϕy1 � � � δϕyk

�
: ð15Þ

Second is to split a propagator into two propagators using
an insertion of the three-point 1PI vertex:

Dy1y2 → Dy1z1

�
−i

δ3ð−ΓÞ
δϕz1δϕxδϕz2

�
Dz2y2

¼ δ

δϕx D
y1y2 : ð16Þ

Putting together all the possible ways of performing both
types of these insertions amounts to taking the functional
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derivative ðδ=δϕxÞ of the amplitude, namely, the first term
in Eq. (11).
However, these two operations do not cover all the ways

of adding a leg to an amplitude. The third option is to attach
a three-point 1PI vertex to a leg, which turns that leg into a
propagator that is connected with two new legs:

Mx1���xi���xn → −i
δ3ð−ΓÞ

δϕxδϕxiδϕz D
zyMx1���x̂iy���xn

¼ −Gy
xxiMx1���x̂iy���xn : ð17Þ

The functional Christoffel symbol terms in Eq. (11) are
accounting for all possible ways of doing this operation. A
more detailed derivation of this recursion relation will be
presented in [25]; we summarize our present discussion
in Fig. 1.
It is worth noting that our recursion relation Eq. (11)

reduces to the Berends-Giele recursion relation [22,29–31]
when J ¼ 0 is enforced. To make this connection more
concrete, we extend Eq. (12) to define an analog of the
generalized Christoffel symbols

Gy
x1���xn ≡ iDyzMzx1���xn ; ð18Þ

which, similar to M, satisfy the following recursion
relation for general J ≠ 0

Gz
x1���xnx ¼

δ

δϕx G
z
x1���xn −

Xn
i¼1

Gy
xxiG

z
x1���x̂iy���xn

≡∇xGz
x1���xn ; ð19Þ

as expected for the usual generalized Christoffel symbols.

We see from Eq. (8)(9) that as far as the physical
amplitudes Aðp1;…; pnÞ are concerned, it is sufficient
to study these generalized Christoffel symbols at J ¼ 0. On
the other hand, through Eq. (4)(8)(18), one can derive that
the quantities Gy

x1���xn jJ¼0 play a central role in the re-
lation between ϕy and the “raised” source field
Ĵx ≡ ðiDxyjJ¼0ÞJy:

ϕy ¼ Ĵy −
X∞
n¼2

1

n!
ðGy

x1���xn jJ¼0ÞĴx1 � � � Ĵxn : ð20Þ

Therefore, one can derive Gy
x1���xn jJ¼0 [and hence obtain the

physical amplitudes Aðp1;…; pnÞ] by computing ϕy½Ĵy�
order-by-order in Ĵy. Doing this at the tree-level by
iteratively solving the equation of motion in Eq. (7a) about
J ¼ 0 is the Berends-Giele recursion procedure [22,29–
31]. This approach efficiently computes the quantities
Gy

x1���xn jJ¼0, and hence the physical amplitudes. Our
Eq. (19) [or, equivalently, Eq. (11)] reveals that Gy

x1���xn
possess a more general recursion structure that holds also in
the case J ≠ 0. This is the insight that allows us to define
the generalized notion of field space geometry that can
accommodate derivative field redefinitions.
Functional geometry.—In Sec. III, we derived our first

main result, Eq. (11), which shows that higher-point
correlators can be constructed through the repeated appli-
cation of a covariant-derivative-like operation. This result
holds to all orders in perturbation theory, and suggests the
existence of a geometric structure on the field configuration
space manifold, which we call “functional geometry.”
In this section we show that the objects Mx1���xn indeed

transform covariantly under general field redefinitions, up
to terms that vanish on shell. For simplicity, we restrict the
analysis to tree level. We can parametrize a general field
redefinition ϕðxÞ → ϕ̃ðxÞ that could include derivatives
using a functional relation ϕ½ϕ̃�. At tree level, the 1PI
effective action transforms as a scalar

Γ̃½ϕ̃� ¼ S̃½ϕ̃� ¼ S½ϕ½ϕ̃�� ¼ Γ½ϕ½ϕ̃��: ð21Þ

This allows us to derive the following transformation law
for the amplitudes [25]:

M̃x1���xn ¼
�
δϕy1

δϕ̃x1
� � � δϕ

yn

δϕ̃xn

�
My1���yn þ Ux1���xn ; ð22Þ

where

Ux1���xn ¼ ax1���xny1
δð−ΓÞ
δϕy1

þ
Xn
i¼1

bx1���x̂i���xny1
δϕy2

δϕ̃xi

δ2ð−ΓÞ
δϕy1δϕy2

; ð23Þ

FIG. 1. The n-point amputated correlator M comprises tree
graphs of 1PI vertices (Γ), full propagators (thick lines), and n
amputated external legs (thin lines). Diagrammatically, the
recursion relation Eq. (11) encodes all ways to add a (nþ 1)th
amputated leg to these tree graphs. The functional derivative
ðδ=δϕxÞ adds the new leg to all vertices and propagators
[cf. Eq. (15)(16), respectively], whereas the connection term
combines the new leg with an existing external leg [Eq. (17)].
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for some a and b, are a set of evanescent terms that vanishes
if the field redefinition ϕ½ϕ̃� preserves the two on-shell
conditions in Eq. (10). In other words, on-shell covariance
implies that M transforms like a tensor up to a set of
evanescent terms that do not contribute to physical observ-
ables. In fact, Gy

x1…xn and −iD−1
x1x2 only transform as a

Christoffel symbol and a metric in the same sense, i.e., up
to evanescent terms.
Finally, let us show that our functional geometry

formalism is a generalization of the constant field space
geometric picture explored in Refs. [10–12]. To this end,
we consider the generic form of the Lagrangian,

L ¼ −V þ 1

2
gabð∂μϕaÞð∂μϕbÞ; ð24Þ

to derive Gy
x1x2 explicitly. Making flavor indices (a; b;…)

explicit, one can check that it satisfies

lim
q2→∞

Z
d4x1d4x2d4yeip1x1þip2x2e−iqy

× ½Gc
abðx1; x2; yÞj∂μϕi¼0�

¼ ð2πÞ4δ4ðp1 þ p2 − qÞ

×
1

2
gcdðgda;b þ gdb;a − gab;dÞ: ð25Þ

We see that restricting to constant field configurations and
taking the high momentum transfer limit, Gy

x1x2 reduces to
the Christoffel symbol in Refs. [10–12], i.e., the second line
in Eq. (25). Similarly, the inverse propagator −iD−1

x1x2
reduces to the metric on the constant field space manifold
when taking the same limit:

Z
d4x1d4x2eip1x1e−ip2x2 ½−iD−1

abðx1; x2Þj∂μϕi¼0�

¼ ð2πÞ4δ4ðp1 − p2Þð−p2
2gab þ V;abÞ: ð26Þ

This shows that we have indeed generalized the building
blocks of Riemannian geometry in Refs. [10–12] as
promised.
Conclusions and outlook.—In this Letter, we have

presented a generalization of field space geometry that
accommodates field redefinitions involving derivatives.
The key building blocks are the functional metric and
functional Christoffel symbol introduced here. These
objects enabled us to write down a covariant derivative
on the field space manifold. When acting on an amplitude,
the parallel transport generated by this covariant derivative
yields a new amplitude with an additional leg. This
provides a new type of off-shell recursion relation for
computing amplitudes. We then leveraged this recursion
relation to demonstrate that tree-level amplitudes have a
manifest notion of on-shell covariance, namely, that they
transform like tensors up to terms which vanish when the

on-shell conditions are enforced. This gives us a new way
of understanding the invariance of amplitudes under field
redefinitions reframed in terms of functional geometry.
There are many settings where this generalization can be

applied. One immediate application is the generalization of
invariant criteria for EFTs to linearly realize a symmetry
[10,11,14] to accommodate derivative field redefinitions.
We claim that if there exists a fixed point ϕ0ðxÞ on the field
configuration space manifold, which corresponds to the
point where the symmetry can be linearly realized, then we
can solve for it using

δnð−ΓÞ
δπx1 � � � δπxn

����
ϕ¼ϕ0ðxÞ

¼ 0; ð27Þ

where the π’s are the Goldstone directions on the manifold.
The existence of the fixed point ϕ0ðxÞ determined using
this criterion cannot be obscured using derivative field
redefinitions anywhere on the field space manifold. Our
framework should similarly generalize our understanding
of how Lagrangian terms map onto kinematic structures in
amplitudes, and allow the generalization of the analysis of
soft-theorems presented in Ref. [17] to accommodate the
full set of allowed field redefinitions.
This Letter opens many directions for future research.

Given the supporting details and explicit examples in [25],
one obvious extension will be to understand how the
functional geometry manifests beyond tree level. We know
that such a framework must exist, since it is well known
that amplitudes are invariant under field redefinitions to any
order in perturbation theory. Although our recursion
relation Eq. (11) holds to all orders in perturbation theory,
the 1PI effective action is no longer invariant beyond tree
level, i.e., Eq. (21) does not hold. An understanding of the
covariance properties of the loop level 1PI effective action
will likely make it clear how to geometrize the loop level
amplitudes as well.
Another area that is worth studying is the connection to

the Vilkovisky-DeWitt formulation of the path integral
[23,24]. Their approach is to make the covariance under
field redefinitions (without derivatives) manifest off shell
by modifying the coupling between the field and the source
that appears in the path integral, see Eq. (3). It would be
very interesting to understand how to incorporate the new
methods provided by functional geometry into this way of
writing the path integral to make covariance under all
allowed field redefinitions manifest. Aspects of our con-
struction are also reminiscent of DeWitt’s manifestly
covariant formulation of quantum field theory [32,33]
which we will explore further in [25].
Functional geometry provides a language with which to

understand the on-shell covariance of amplitudes in quan-
tum field theory. Given the foundational role played by the
freedom to perform field redefinitions when defining our
theories, we are optimistic that the new approach proposed
here will lead to further insights.
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Note added.—Recently, we were made aware of the
exciting related work by Cheung, Helset, and Parra-
Martinez [34]. These authors propose the existence of a
“geometry-kinematics” duality, which allows them to
identify the building blocks of a generalized geometry that
accommodates field redefinitions including derivatives.
Our constructions differ at the detailed level. For example,
as the authors note, the geometric invariants that define
their kinematic geometry depend on choices made when
specifying the initial metric, which is not the case for the
functional geometry developed here. It will be very
interesting to understand the relation between these two
approaches. We are grateful to the authors for sharing their
draft with us.
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