
Yangian-Invariant Fishnet Integrals in Two Dimensions as Volumes
of Calabi-Yau Varieties

Claude Duhr ,1,* Albrecht Klemm,1,2,† Florian Loebbert ,1,‡ Christoph Nega ,1,§ and Franziska Porkert 1,∥
1Bethe Center for Theoretical Physics, Universität Bonn, Bonn D-53115, Germany
2Hausdorff Center for Mathematics, Universität Bonn, D-53115, Bonn Germany

(Received 13 September 2022; accepted 22 December 2022; published 25 January 2023)

We argue that l-loop Yangian-invariant fishnet integrals in two dimensions are connected to a family of
Calabi-Yau l folds. The value of the integral can be computed from the periods of the Calabi-Yau, while the
Yangian generators provide its Picard-Fuchs differential ideal. Using mirror symmetry, we can identify the
value of the integral as the quantum volume of the mirror Calabi-Yau. We find that, similar to what happens
in string theory, for l ¼ 1 and 2 the value of the integral agrees with the classical volume of the mirror, but
starting from l ¼ 3, the classical volume gets corrected by instanton contributions. We illustrate these
claims on several examples, and we use them to provide for the first time results for 2- and 3-loop Yangian-
invariant train track integrals in two dimensions for arbitrary external kinematics.
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Multiloop Feynman integrals are the cornerstone of all
modern perturbative approaches to quantum field theory
(QFT) and a backbone of precision computations for collider
and gravitational wave experiments. It is therefore of utmost
importance to have efficient ways for their computation and
a solid understanding of the underlying mathematics. Over
the last years, it has become clear that the mathematics
relevant to Feynman integrals is tightly connected to certain
topics in geometry. One of the earliest observations was that
1-loop Feynman integrals compute the volumes of certain
polytopes in hyperbolic spaces [1–5]. Here, the most
prominent example is the 1-loop four-point function with
massless propagators in four space-time dimensions:
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with αij ¼ αi − αj. This integral features a so-called (dual)
conformal symmetry [6] (with conformal weight 1 for each
external point), and the variable z is connected to the cross
ratio formed out of the four external points αi. The function
DðzÞ is the so-called Bloch-Wigner dilogarithm, which is
known to compute the volume of a simplex in hyperbolic 3
space, see, e.g., [7]:

DðzÞ ¼ Im½Li2ðzÞ þ log jzj logð1 − zÞ�: ð2Þ

Notably, this result for the four-point integral can be boot-
strapped from scratch, using a Yangian extension of the
(dual) conformal symmetry [8].
The interpretation of Feynman integrals as volumes is so

far only understood at 1 loop. While there is substantial
evidence that, at least in special QFTs, the integrands of
Feynman integrals are related to certain volume forms for
generalizations of polytopes (see, e.g., [9–13]), it is an open
question if at higher loops the values after integration
can be interpreted as volumes of geometric objects. If
that were indeed the case, it would shed new light on the
mathematical structure of perturbative QFT, and possibly
lead the way toward novel methods for the computation of
Feynman integrals. The main goal of this Letter is to take
first steps into this direction and to present for the
first time an infinite class of higher-loop Feynman integrals
whose values can indeed be interpreted as a volume.
Fishnet integrals in two dimensions.—In the remainder

of this Letter we focus on so-called fishnet integrals in two
Euclidean dimensions, defined by a connected region cut
out along a closed curve C intersecting the edges of a
regular tiling of the plane by a square lattice (see Fig. 1

FIG. 1. Ten-point 5-loop fishnet integral cut out of a square
tiling of the plane.
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and [14]). This defines a connected graphG by considering
only the edges of the lattice that intersect C (the external
edges) or lie in its interior (the interior edges). Edges of G
connecting two vertices labeled by a; b ∈ R2 represent
propagators ½ða − bÞ2�−1=2, and we integrate over the
positions of the internal vertices labeled ξi. It is well
known that for a two-dimensional QFT it is useful
to consider complexified coordinates aj ¼ α1j þ iα2j and
xk ¼ ξ1k þ iξ2k. The integrals we want to consider can then
be written as

IGðaÞ ¼
Z �Yl

j¼1

dxj ∧ dx̄j
−2i

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jPGðx; aÞj2
p ; ð3Þ

with a ¼ ða1;…; anÞ, x ¼ ðx1;…; xlÞ, and

PGðx; aÞ ¼
�Y

i;j

ðxi − xjÞ
��Y

i;j

ðxi − ajÞ
�
; ð4Þ

and the product ranges depend on the graph topology. If the
l ¼ M × N interior integration points span a rectangle, we
denote the graph by GM;N, with M ≤ N.
Every fishnet integral is invariant under the Yangian

Y½soð1; 3Þ� of the conformal group in two dimensions
[15,16]. The Yangian splits into holomorphic and anti-
holomorphic parts:

Y½soð1; 3Þ� ¼ Y½sl2ðRÞ� ⊕ Y½sl2ðRÞ�; ð5Þ

where the generators of Y½sl2ðRÞ� act via partial differential
operators on the holomorphic external points ai and
annihilate the integral (at least for generic values of the
external points). For the explicit form of the representation
of the Yangian, we refer to [16]. We note that invariance
under the conformal subalgebra sl2ðRÞ implies that we can
write IGðaÞ ¼ jFGðaÞj2ϕGðzÞ, where z ¼ ðz1;…; zn−3Þ is a
vector of conformal cross ratios formed out of the ai and
FGðaÞ is a holomorphic algebraic function that carries the
conformal weight.
Analytic results are known for various classes of fishnet

integrals depending only on four external points (see
Fig. 2, for an example), and consequently only on a single
cross ratio, which we choose as z ¼ crð2; 3; 1; 4Þ ¼
a23a14=a21a34. In [17] analytic results are given for
GM;N , where the external points that are incident to the
same side of the rectangle are identified (we call these
graphs G1

M;N) with determinants of (derivatives of) ladder
graphs G1

1;l. The ladder graphs G1
1;l themselves can be

expressed as bilinear combinations of generalised hyper-
geometric functions. So far, no results are known for fishnet
graphs in two dimensions depending on more than 1
cross ratio.

2D fishnets and Calabi-Yau geometries.—We now argue
that to every l-loop fishnet graph we can associate a
Calabi-Yau (CY) l fold. Loosely speaking, a CY l fold is a
complex l-dimensional Kähler manifold Ml that admits a
unique holomorphic ðl; 0Þ-form Ω. This last condition can
be phrased as follows: the cohomology groups HrðMlÞ
admit a decomposition

HrðMlÞ ¼ ⨁
pþq¼r

Hp;q; ð6Þ

where the Hp;q are generated by cohomology classes of
ðp; qÞ forms, i.e., forms involving exactly p holomorphic
and q antiholomorphic differentials. The Hodge numbers of
Ml are hp;q ¼ dimHp;q. The CY condition then translates
into hl;0 ¼ 1. Note that for a family of CY varieties
parametrized by dM independent moduli, we have hl−1;1 ¼
dM for l ≠ 2. For K3 families l ¼ 2, dM is the number of
independent transcendental cycles minus two.
One possibility to define a family of CY l folds is given

by a double cover. Here, we consider the constraint
y2 ¼ PGðx; aÞ, double covering an l-dimensional projec-
tive base space B with coordinate x ¼ ðx1;…; xlÞ and
canonical class KB > 0. This defines a family MG para-
metrized by a and with ðl; 0Þ form

ΩG ¼ μBðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGðx; aÞ

p ; ð7Þ

where μB is the holomorphic measure on B. Note that IG is
obtained by integrating ΩG ∧ Ω̄G over Cl. To guarantee
that we really obtain a family of CY l folds, the degree of
PGðx; aÞ has to be such that the canonical class vanishes.
We consider B ¼ ×l

i¼1P
1 and μB ¼∧l

i¼1 ðx0idxi − xidx0iÞ
(with ½xi∶x0i� the homogeneous coordinate on the ith copy
of P1), which is a natural compactification of the integra-
tion range Cl in (3). The vanishing of the canonical class
then translates into the fact that PGðx; aÞ has to be of degree
4 in each P1. This condition is always fulfilled for fishnet
graphs, because all internal vertices are 4 valent. For l > 1,
MG is typically a singular variety. Similar to [18], in all
examples that we have studied (see below), these singu-
larities can be resolved by deforming MG to a smooth CY
l fold, and we expect this to hold in all cases. We will
further elaborate on this in [19].

FIG. 2. Example of the four-point limit G1
2;3 of a rectangular

fishnet graph G2;3.
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There is a natural set of integrals, called periods, that we
can associate to a CY l fold by integrating ΩG over a basis
of cycles Γi that span the middle homology HlðMG;ZÞ.
The vector of periods is

ΠG¼
�Z

Γ1

ΩG;…;
Z
Γbl

ΩG

�
; bl¼dimHlðMG;ZÞ: ð8Þ

The periods are multivalued functions of a. For every CY l
fold, there is a monodromy-invariant matrix Σ that defines a
bilinear pairing on the periods, and Σ may be chosen
symmetric for l even and antisymmetric (and even sym-
plectic) for l odd. It is well known how to relate the integral
of ΩG ∧ Ω̄G to the monodomy-invariant combination of
periods as follows:

Z
MG

ΩG ∧ Ω̄G ¼ ð−iÞlΠ†
GΣΠG: ð9Þ

This gives us a way to reduce the computation of fishnet
integrals to the problem of finding the periods ΠG of MG.
The periods are solutions to certain differential equations,
as we will now review.
The flatness of the Gauss-Manin connection implies the

existence of an ideal of differential operators, called
the Picard-Fuchs differential ideal (PFI), whose space of
solutions is precisely spanned by the periods. The PFI can
be derived by the Griffiths reduction method or a reduction
of the Gel’fand-Kapranov-Zeleviskı̆ system, see [20] for a
review. In practice, these methods can be rather slow, in
particular in the case of many variables. We find that the
PFI ofMG contains the generators of Y½sl2ðRÞ�. Moreover,
the group AutðGÞ of automorphisms ofG acts on Y½sl2ðRÞ�
by permuting the external points ai, and so the PFI
naturally also contains these operators. Remarkably, in
all cases we have studied, the complete PFI of MG is
obtained in this way.
We can summarize our findings as follows.
Claim 1.—We have shown that for every l-loop fishnet

graph G, there exists a family of CY l folds MG with
holomorphic ðl; 0Þ form ΩG such that

IGðaÞ ¼ ð−iÞlΠ†
GΣΠG: ð10Þ

Furthermore, we conjecture that the PFI of this CY is
generated by AutðGÞ · Y½sl2ðRÞ�.
Let us make some comments about this result. First, we

emphasize that (10) represents a relation we have derived
above, see also (9). Moreover, Claim 1 implies that the
periods ofMG are Yangian invariants. The invariance under
the conformal sl2ðRÞ subalgebra implies that we can write
ΠGðaÞ ¼ FGðaÞΠ̃GðzÞ, where FGðaÞ is a holomorphic and
algebraic function of a. Second, we expect that the PFI has a
point of maximal unipotent monodromy (MUM) [21]. For
example, for train track graphs G1;l, we find that a MUM

point can be identified as follows: we label an external point
on a small side by a1, and the others clockwise up to a2lþ2.
Then a MUM point is at z ¼ 0, with zk ¼ crð1; kþ 1;
kþ 2;lþ 2Þ, zl¼ crð1;lþ1;2lþ2;lþ2Þ and zlþk ¼
crð1; 2lþ 3 − k; 2lþ 2 − k;lþ 2Þ for k ¼ 1;…;l − 1.
For the one-parameter graphsG1

M;N , we found MUM points
up to l ¼ M × N ¼ 12 and a nonorientable graph, and we
expect that they are present in full generality. Near theMUM
point z ¼ 0, there is a unique holomorphic period Π̃G;0ðzÞ,
that we can normalize to Π̃G;0ðzÞ ¼ 1þOðzÞ, and which
multiplies the dM solutions linear in the logarithm, as well as
the solution of maximal order lþ 1 in the logarithms. We
define ϕGðzÞ ¼ ð−iÞlΠ̃†

GΣΠ̃G. Finally, it is well known that
Π̃†

GΣΠ̃G is proportional to e−Kðz;z̄Þ, where Kðz; z̄Þ is the
Kähler potential for the Weil-Peterssen metric on
the moduli space of MG. This gives an interpretation of
the Feynman integral in terms of the geometry. In the next
section, we relate it to the quantum volume of the mirror.
We have verified that we can reproduce the complete PFI

from the Yangian generators for G1;2, G1;3, and G2;2.
Having at our disposal the PFI of MG, we can solve the
differential equations satisfied by the periods using stan-
dard techniques in terms of series expansions [22]. This
basis of solutions, however, will in general be a linear
combination with complex coefficients of the periods in
(8). With the methods described in [23,24], it is possible to
construct the change of basis and to find the monodromy
invariant bilinear pairing Σ, and thus to compute IGðaÞ
through (10). We have done this explicitly for G1;2

and G1;3. We have checked that our results numerically
agree with a direct evaluation of the Feynman parameter
representation for IGðaÞ for various values of a, and we find
very good agreement (see Fig. 3). More details about the
structure and the properties of the solutions will be
provided in [19].

FIG. 3. The functions ϕG1;2
ðz1; z2; z3Þ and ϕG1;3

ðz1;…; z5Þ
evaluated on the one-dimensional slice ðz1; z2; z3Þ ¼ ðs=16Þ
ð1; 2; 3Þ and ðz1;…; z5Þ ¼ ðs=16Þð1; 2; 12; 4; 5Þ (for the defini-
tion of our cross ratios, see the main text). The continuous lines
represent the results obtained from our analytic result in terms of
CY periods, while the dots are obtained from a numerical
evaluation of the Feynman parameter representation of G1;l.
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Let us conclude by commenting on the structure of the
four-point ladder graphs G1

1;l of [17,25]. At l loops we
have a one-parameter family of CY l folds whose PFI is
generated by a single operator Ll of degree lþ 1 that has a
MUM point at z ¼ 0, and we have hp;l−phor ¼ 1, 0 ≤ p ≤ l.
These operators are special instances of the Calabi-Yau
operators considered in [26,27]. We have checked up to
l ¼ 5 that we reproduce the results of [17] from our (10)
[28]. For l ¼ 1, we obtain the Legendre family of elliptic
curves, and the periods can be expressed in terms of elliptic
integrals [17,25]:

ϕG1
1;1
ðzÞ ¼ 4

π2
ðKK̄0 þ K̄K0Þ ¼ 8

π2
jKj2Imτ1; ð11Þ

and FG1
1;1
ðaÞ ¼ π=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a12a34

p
. Here, K ≡ KðzÞ is the com-

plete elliptic integral of the first kind and K0 ≡ Kð1 − zÞ,
and we defined τ1 ¼ iK0=K. For l ¼ 2, we obtain a one-
parameter family of K3 surfaces. It is known that every CY
operator of degree 3 is equivalent to the symmetric square
of a CYoperator of degree 2 [26,29], and so we can express
G1

1;2 in terms of elliptic integrals. We defineK� ¼ K½1
2
ð1�ffiffiffiffiffiffiffiffiffiffi

1 − z
p Þ� such that ðK2

−; K−Kþ; K2þÞ span the solution
space of L3. G1

1;2 is then given by

ϕG1
1;2
ðzÞ ¼ 2

π4
ðKþK̄− þ K−K̄þÞ2

¼ 8

π4
jK−j4ðImτ2Þ2; ð12Þ

with τ2 ¼ iKþ=K− and FG1
1;2
ðaÞ ¼ 4

ffiffiffi
2

p
π2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12a34a24

p
.

For l > 2, it is not possible anymore to express the periods
of MG1

1;l
in terms of elliptic integrals.

Fishnets as quantum volumes.—The results of the
previous section allow us to reduce the computation of
IGðaÞ to the computation of the periods of MG. Since (1)
computes the volume of a hyperbolic simplex, it is natural
to ask if we can interpret IGðaÞ as a volume of sorts.
At this point, however, we face an issue. In (1) the
ambient hyperbolic space of the simplex provides the
canonical metric with respect to which the volume is
computed. On MG, however, we do not have any distin-
guished metric. Indeed, while a fixes ΩG, and thus the
complex structure, there is still substantial freedom to
define a Kähler form, and thus a metric, on MG. We
now argue that we obtain a volume interpretation using
mirror symmetry.
Mirror symmetry expresses the remarkable conjecture

that CY l folds come in pairs ðMG;WGÞ such that
the cohomology groups Hp;qðMGÞ and Hl−p;qðWGÞ are
exchanged. In particular, mirror symmetry exchanges the
complex structures encoded inHl−1;1ðMGÞ with the Kähler
structures from H1;1ðWGÞ. Since G defines via ΩG a
complex structure on MG, mirror symmetry provides a

Kähler form ωG ∈ H1;1ðWGÞ. Choosing z such thatMG has
a MUM point at z ¼ 0, we have

ωG ¼
X
i

tRG;iðzÞωðiÞ; ð13Þ

where ωðiÞ is a basis ofH1;1ðWGÞ, and the tRG;iðzÞ ¼ ImtiðzÞ
are given by the mirror map

tG;iðzÞ ¼ Π̃G;iðzÞ=Π̃G;0ðzÞ; i ¼ 1;…; dM; ð14Þ

where the Π̃G;iðzÞ diverge like a single power of a logarithm
at the MUM point. The Kähler form, in turn, can be used to
define a volume form ωl

G=l! onWG, and we can define the
classical volume of WG as

VolclðWGÞ ¼
Z
WG

ωl
G

l!

¼ 1

l!

X
i1;…;il

Ccl
i1;…;il

tRi1ðzÞ � � � tRilðzÞ; ð15Þ

where the Ccl
i1;…;il

are explicitly computable integers,
namely the (classical) intersection numbers of MG.
Let us illustrate this on the examples of the ladder graphs

considered at the end of the previous section. At 1 loop,
we findVolclðWG1

1;1
Þ ¼ tRG1

1;1;1
ðzÞ ¼ Imτ1,which is thearea of

the fundamental parallelogram (with sides ð1; τ1Þ) that
defines the elliptic curve WG1

1;1
associated to G1

1;1.

Similarly, we have VolclðWG1
1;2
Þ ¼ 1

2
tRG1

1;2;1
ðzÞ2 ¼ 1

2
ðImτ2Þ2.

Comparing this to (11) and (12), we see that

ϕG1
1;1
ðzÞ ¼ 4

π2
jKj2VolclðWG1

1;1
Þ;

ϕG1
1;2
ðzÞ ¼ 16

π4
jK−j4VolclðWG1

1;2
Þ; ð16Þ

i.e., we see that the 1- and 2-loop ladder integrals are
proportional to the classical volume of the mirror CY (the
prefactor proportional to Π̃G1

1;l;0
defines the overall scale).We

checked that the same statement holds for the 2-loop train
track integralG1;2, which depends on three independent cross
ratios.
For more than three loops, mirror symmetry (still

conjectural for l > 3) suggests that the last factor in
(16) is to be interpreted in general as the quantum volume
VolqðWGÞ of the mirror manifoldWG. The latter is defined
to be real and positive and to approach in the limit zi → 0

(or equivalently in the large volume limit tRG;i → ∞)
the classical volume (15) such that the exponentially
suppressed e−t

R
G;i corrections are precisely the contributions

of holomorphically embedded curves or world sheet
instantons. This is the same notation that lead to the notion

PHYSICAL REVIEW LETTERS 130, 041602 (2023)

041602-4



of quantum intersections in quantum cohomology [30].
Since for K3’s and elliptic curves there are no instanton
corrections, it is the classical volume that appears in (16),
but the general geometrical interpretation of the fishnet
integral should be given by the quantum volume.
Claim 2.—ϕGðzÞ is determined by the quantum volume

of the mirror WG to MG:

ϕGðzÞ ¼ jΠ̃G;0ðzÞj2VolqðWGÞ: ð17Þ

The CY threefold version of the quantum volume
considered here also features in the analysis of nonpertur-
bative properties of string compactifications in [31].
We have checked Claim 2 on our examples for multiloop

train track integrals, as well as for the one-parameter
rectangular fishnet integrals of [17]. Claim 2 shows that
it is possible to give a volume interpretation to all Yangian-
invariant fishnet graphs. This extends the volume inter-
pretation of (1) from four to two dimensions, but with the
advantage that the interpretation naturally extends to higher
loops. To our knowledge, this is the first time that multiloop
Feynman integrals were identified that compute volumes of
geometric objects.
Conclusion.—In this Letter we have studied a class of

Feynman integrals that connect research in mathematics,
scattering amplitudes and integrability. Our main result is
that Yangian-invariant l-loop fishnet integrals in two
dimensions are naturally associated to families of CY l
folds and that the values of these integrals represent the
quantum volume of the mirror CY. Indeed, we find that for
l ≤ 2, the train track integrals compute the classical
volume of the mirror, in agreement with the fact that there
are no instanton corrections for elliptic curves or K3
surfaces. Starting from l ¼ 3, instanton corrections can
no longer be neglected. This is the first time that it was
possible to identify a higher-loop Feynman integral as a
volume of a geometric object. Intriguingly, we find that
mirror symmetry plays an important role in this context.
Our results are not just of formal interest. Indeed, we find

that we can reduce the problem of computing fishnet
integrals in two dimensions to the geometrical question
of finding the periods of MG. Remarkably, solving this
geometrical question receives input from physics, because
we find that the Picard-Fuchs differential ideal is deter-
mined by the Yangian generators for fishnet graphs (and
permutations thereof). We have illustrated this by providing
for the first time results for two-dimensional train track
integrals at two and three loops.
Our work opens up several new directions for research,

both in mathematics and in physics. First, it would be very
interesting to study the geometrical properties of the CY
varieties we have encountered in detail, in order to under-
stand what role Yangian symmetry plays from the geo-
metrical point of view. It is well known that one-parameter
families of CYs in various dimensions can be related by

Hadamard-, symmetric-, or antisymmetric products [27].
As an example for the last relation we find that the solution
space of the four-pointG1

M;N graphs is spanned, possibly up
to rational functions [19], by M ×M subdeterminants of
the Wronskian of the solutions of the G1

1;MþN−1 graphs.
These determinant relations are reminiscent of Basso-
Dixon formulas [17,32], but relate integrals of different
loop order. From the physics perspective, it would be
interesting to clarify the role of the CY geometry in the
context of the integrable fishnet theories defined
in [33,34], and in how far the CY geometry, and in
particular the instanton corrections for l > 2, play a role
in the integrability of the theory. Finally, it would be
important to clarify if a similar volume interpretation can
also be achieved for other classes of multiloop Feynman
integrals, including integrals in four space-time dimen-
sions. The most natural place to start is to consider
rectangular four-point fishnet integrals in four dimensions,
for which analytic results in terms of polylogarithms are
known [32,35,36]. Recently, it was shown that l-loop
Yangian-invariant train track integrals in four dimensions
are related to CY (l − 1) folds [37–41] (and at two loops
complete analytic results are known [42–44]). It would thus
be interesting to investigate if also in this case it is possible
to identify a volume description via mirror symmetry.
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