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Quantum electrodynamic fields possess fluctuations corresponding to transient particle-antiparticle
dipoles, which can be characterized by a nonvanishing polarizability density. Here, we extend a recently
proposed quantum scaling law to describe the volumetric and radial polarizability density of a quantum field
corresponding to electrons and positrons and derive the Casimir self-interaction energy (SIE) density of the
field, ĒSIE, in terms of the fine-structure constant. The proposed model obeys the cosmological equation of
state w ¼ −1 and the magnitude of the calculated ĒSIE lies in between the two recent measurements of the
cosmological constant Λ obtained by the Planck Mission and the Hubble Space Telescope.
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Quantum fields possess transient particle-antiparticle
(p−=pþ) pair fluctuations or “virtual excitations” [1,2].
For electrodynamic fields, such virtual excitations corre-
spond to formation of minute and short-lived dipoles,
indicating that the field should possess a finite intrinsic
polarizability density. In this Letter, we propose a model for
the polarizability density of quantum electrodynamic fields
based on an extension of a recently derived quantum-
mechanical scaling law between polarizability and equi-
librium (van der Waals) radius [3,4] to p−=pþ fluctuations.
We then calculate the finite Casimir self-interaction energy
density of such a quantum field and find that its equation of
state matches the one of cosmological dark energy,
w ¼ −1, whereas the magnitude of the obtained energy
density agrees with the most recent measurements of the
cosmological constant Λ.
Linear polarization of a quantum field is described by a

polarizabilitydensity-density tensor (PDDT)αFðr; r0; t; t0Þ ¼
δPðr; tÞ=δEðr0; t0Þ—a functional derivative of polarization
field Pðr; tÞ with respect to the electric field Eðr0; t0Þ. Since
time is homogeneous, αFðr; r0; t; t0Þ ¼ αFðr; r0; t − t0Þ,
which allows switching to the frequency-dependent quantity
αFðr; r0;ωÞ. Upon integrating αFðr; r0; t; t0Þ or αFðr; r0;ωÞ
over the spatial variable r0, tracing over tensor components,
and taking the infinite-time limit jt − t0j → ∞ or the zero-
frequency limit ω → 0 yields a homogeneous static
polarizability density αFðrÞ. In addition, the following argu-
ment suggests that an integral over r0 leads to a finite value
of αFðrÞ. The production of particle-antiparticle pairs emerg-
ing from the vacuum upon applying an electric field

(Schwinger effect) is an established physical fact. For
sufficiently long timescales, the polarizability of a created
p−=pþ pair is essentially infinite since the particle and its
antiparticle yield an increasingly growing dipole. In contrast,
the polarizability of bound p−=pþ pairs is finite. Reducing
the applied field to zero does not eliminate zero-point
fluctuations, hence a quantum field should possess intrinsic
polarizability density even in the absenceof any external field.
The observable (di)electric permittivity of free space, ε0 (with
units of polarizability density), has a finite value, yielding
further support for our proposal. Obviously, the effects of
vacuum polarization are experimentally measured by apply-
ing external fields [5–7], hence the possibility of observing
intrinsic (zero-field) vacuum polarization is a contentious
question at this moment. We are here ultimately concerned
with measurable quantities, such as energy density and the
cosmological constant. Therefore, we use a finite vacuum
polarizability density as a working hypothesis and explore its
consequences on experimental observables. In what follows,
the polarizability unit will be normalized by 4πε0, to measure
the polarizability αF in terms of the polarizability volume [8].
Consequently, the two-point polarizability αFðr; r0Þ has units
of inverse volume and the polarizability density αFðrÞ is
unitless. The fine-structure constant (FSC) is denoted by αfsc.
All polarizable entities experience mutual dispersion

forces, which are either of van der Waals (vdW) or
Casimir type [9–14]. Both forces are manifestations of
the same phenomenon related to polarization propagated
via the corresponding gauge field. The broad relevance of
dispersion forces has been recognized for diverse phenom-
ena, ranging from particle physics [15], to atoms [16],
molecules [17], and condensed matter [18,19], and even for
cohesion in macroscopic objects of cosmological relevance
[20,21]. The difference between vdW and Casimir forces
is that the latter name is employed when polarization
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propagation requires finite time determined by the under-
lying gauge field (usually, speed of light).
The exact vdW or Casimir self-interaction energy (SIE)

density caused by particle-antiparticle fluctuations of a
quantum field can be computed using the adiabatic con-
nection fluctuation-dissipation theorem (see Refs. [22,23]
for seminal works formulated in terms of the density
response function and Refs. [17,24,25] for a modern
formulation in terms of the polarizability):

ĒSIE ¼ ℏ
2πV

Z
∞

0

du
Z

1

0

dλ
Z
V

Z
V
drdr0

× Trf½αλðr; r0; iuÞ − α0ðr; r0; iuÞ�Tðr; r0; iuÞg; ð1Þ

where α0ðr; r0; iuÞ is the PDDT corresponding to bare
p−=pþ fluctuations, with u as the oscillation frequency.
Then, αλðr; r0; iuÞ is the PDDT corresponding to p−=pþ
fluctuations interacting with strength λ and Tðr; r0; iuÞ is
the dipolar propagator for the bosonic field mediating the
interaction (e.g., the retarded dipole potential when con-
sidering the electromagnetic field). The integration vol-
ume V is infinite, but in practice it is sufficient to integrate
over V of the same order as the volume of quantum p−=pþ
fluctuations, i.e., of the order of Thomson’s scattering
length cubed. We remark that elementary particles are
usually considered to be structureless, i.e., they have zero
size. However, elementary particles acquire an effective
orbital size when they are probed by other particles or
fields. For example, the electron orbital has an effective
radius of a0 (Bohr’s radius) when interacting with a
proton. Similarly, the effective electron orbital radius
becomes αfsca0 in an inelastic interaction with a photon
(Compton scattering). Whereas, in an elastic electron–
photon interaction (Thomson scattering), the electron
orbital radius becomes α2fsca0. Our Letter proposes a
model for the electron-positron field interacting with
the photon field in the low-frequency elastic regime
relevant to vdW or Casimir phenomena. In this case,
the Thomson’s scattering radius (α2fsca0) is the most
natural choice for the effective size of the electron (and
positron) orbital. Furthermore, Thomson’s scattering
length defines the onset of measurable effects of quantum
fluctuations in quantum field theory [1].
The internal polarization dynamics which generate

αλðr; r0; iuÞ for an interacting quantum field are not known
in detail yet. Therefore, we resort to coarse-grained
models for αλðr; r0; iuÞ taking into account the main
symmetries of a quantum field in its vacuum state, such
as its homogeneity and isotropy. In the retarded Casimir
regime, the static (u ¼ 0) full-potential (λ ¼ 1) approxi-
mation αðr; r0Þu¼0 is sufficient. Using either homogeneity
or isotropy of the field, in what follows we propose
models for volumetric and radial polarizability densities
of p−=pþ fluctuations and use these models for evaluating
approximations to Eq. (1).

To simplify the notation, forthcoming derivations will
be carried out for the electron-positron (e−=eþ) field.
Generalization to other quantum fields will be briefly
discussed below. Because of the homogeneity of zero-
point fluctuations, the electron-positron field can be mod-
eled as a condensed overall-neutral homogeneous medium
of electrons and positrons with e−=eþ pairs forming
transient dipoles characterized by an isotropic polarizability
that follows a quantum-mechanical scaling law [3,4]

αe−=eþ ¼ 2

3

�
α1=3fsc × Re−=eþ

a0

�4

R3
e−=eþ ; ð2Þ

where a0 is Bohr’s radius and Re−=eþ is the equilibrium
(vdW) radius of the e−=eþ pair. The quantum-mechanical
scaling of the polarizability ∝ R7

vdW and its dependence on
the fine-structure constant originates from the dressing
of particle-hole excitations by virtual photons of the
electromagnetic field, as discussed in Ref. [4]. The four-
dimensional renormalization factor ðα1=3fsc × Re−=eþ=a0Þ4
corresponds to the polarizability density of the excited
electromagnetic field [26]. The factor 2=3 accounts for
two contributions: (i) both electrons and positrons are
polarizable (factor of 2), (ii) the e−=eþ pair polarizes in a
homogeneous field where all polarization directions
are degenerate, akin to the jellium model (factor of 1=3)
[27]. As discussed above, we set the equilibrium radius
Re−=eþ to the Thomson scattering length, RTh ¼ α2fsca0, at
which the electrostatic self-interaction energy of a particle
(e2=4πε0RTh) equals its rest mass–energy (mec2). Finally,
the effective volume corresponding to each e−=eþ pair
becomes Ve−=eþ ¼ 2 × ð4π=3ÞR3

e−=eþ , since both electrons
and positrons contribute to the polarizability volume.
With a homogeneous model for αðr; r0Þu¼0 ≡ αe−=eþ, the

Casimir energy density for two interacting e−=eþ pairs, as a
second-order approximation to Eq. (1), can be obtained
according to Ref. [28] as

Ēð2Þ
SIE ¼ −

23ℏc
4π

×
α2e−=eþ

ð2Re−=eþÞ7 × Ve−=eþ
: ð3Þ

Expressing the polarizability in terms of Re−=eþ yields

Ēð2Þ
SIE ¼ −

23ℏc
3072π2

×
�
α1=3fsc

a0

�8

× ðRe−=eþÞ4; ð4Þ

whereas upon substituting the equilibrium vdW radius
we obtain

Ēð2Þ
SIE ¼ −

23α29=3fsc

3072π2
×
ℏcαfsc
a40

¼ −
23α29=3fsc Eh

3072π2a30
; ð5Þ
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where Eh ¼ ℏcαfsca−10 is the Hartree energy. The Ēð2Þ
SIE

contribution amounts to a pairwise interaction between
e−=eþ pair fluctuations. Calculating ĒSIE for the field
requires summing the pairwise potential over all possible
many-body geometries of e−=eþ fluctuations, which can be
approximated as a lattice sum. Hence, the Casimir SIE
density of the electron-positron field is given by

ĒSIE ¼ Ēð2Þ
SIE × Neff ; ð6Þ

where Neff corresponds to a weighted lattice sum of R−7

potential over all possible field arrangements of e−=eþ
pairs. Performing a more general treatment of the field
below, here we determine limiting behaviors of Neff as
corresponding to body-centered cubic (bcc), Nbcc

eff ¼ 11.05,
and face-centered-cubic (fcc), Nfcc

eff ¼ 13.36, lattices calcu-
lated from

Neff ¼
X
Rj≠0

ð2Re−=eþÞ7
jRjj7

; ð7Þ

where the sum runs over lattice vectors of the correspond-
ing bcc or fcc structure. The obtained estimates for Neff
yield the following interval of (absolute) values for
the Casimir SIE density: jĒSIEj ¼ f1.85 × 10−23; 2.24×
10−23g Ha=Bohr3. Remarkably, this energy density range
(barring the sign to be discussed below) seems to agree
well with the recent estimates of the vacuum energy
density as given by the cosmological constant Λ¼f1.84×
10−23;2.20×10−23gHa=Bohr3 [29], when taking two dif-
ferent values of the Hubble constant measured by either the
Planck Mission [67.66 ðkm=sÞ=Mpc] [30] or the Hubble
Space Telescope [74.03 ðkm=sÞ=Mpc] [31].
The uncertainty related to the estimation of Neff can be

avoided by making a derivation of the Casimir SIE density
based on collective fluctuations of concentric spherical
field shells, instead of particle-antiparticle pairs. This
model is based on both homogeneity and isotropy of
quantum fields. First, we define the radial polarizability
density of a thin spherical shell with radius r (centered at
r0 ¼ 0) for the electron-positron field

ᾱe−=eþðrÞ ¼
4πr2

a30

�
α1=3fsc × r

a0

�4

r3: ð8Þ

The Casimir SIE density for a particle-antiparticle
field can now be calculated by summing the SIE over
concentric spherical shells from r ¼ 0 to r ¼ rf, where rf
is the dressed Thomson scattering length. As shown in
Ref. [4], the corresponding (vdW) equilibrium length
Re−=eþ is renormalized to rf ¼ α−1=3fsc Re−=eþ , which gives

us rf ¼ α5=3fsc a0. Then, the SIE density for the e−=eþ field,

as an approximation for concentric shells to Eq. (1),
becomes [10,32]

ĒSIE ¼ −
3ℏc
8πa30

Z
rf

0

ᾱe−=eþðrÞ
r4

dr: ð9Þ

Evaluating the integral yields

ĒSIE ¼ −
ℏc
4a60

�
α1=3fsc

a0

�4

r6f: ð10Þ

Finally, substituting rf, we obtain

ĒSIE ¼ −
ℏcα34=3fsc

4a40
¼ −

1

4
αð31=3Þfsc Eha−30 : ð11Þ

In atomic units, jĒSIEj¼2.07×10−23Ha=Bohr3. This num-
ber lies in between the two recent estimates of the cosmo-
logical constant Λ¼f1.84×10−23;2.20×10−23gHa=Bohr3
[29]. In cosmology, Planck’s units are often used, setting
ℏ ¼ 1, c ¼ 1, and 8πG ¼ 1. Expressing Eq. (11) in Planck’s
units, we obtain jĒSIEj ¼ 3.31 × 10−122l−2P , where lP is
Planck’s length.
The comparison between Eqs. (6) and (11), allows us to

derive an effective value for Neff, as a weighted lattice
interaction sum over all possible field arrangements of
particle-antiparticle pairs. Based on Eqs. (5) and (11),

we obtain Neff ¼ ĒSIE=Ē
ð2Þ
SIE ¼ ð768π2=23Þα2=3fsc ≈ 12.40.

This number lies in between the corresponding values
calculated for body-centered-cubic and face-centered-cubic
lattices above.
Although ĒSIE given by Eqs. (5) or (11) has a negative

sign, as vdW or Casimir energy should have in a typical
geometry, it satisfies the (cosmological) equation of state
of an expanding scalar field w ¼ P=ĒSIE ¼ −1, where
P ¼ −dE=dV is the pressure. The field has a tendency
to expand because of the linear dependence of the energy
on the volume, ESIE ∝ ĒSIEV, according to Eq. (11). We
also remark that matter would experience an effective field
with a positive ĒSIE, because the polarization of matter, as
an excitation of the field, is measured with respect to the
polarization of the vacuum field which would be described
via α0ðr; r0; iuÞ in Eq. (1) when computing the vdW or
Casimir interactions between two material objects.
The obtained results rely on the applicability of the

fully retarded Casimir-Polder energy given by Eq. (3) for
calculating the SIE of a quantum field. Let us evaluate its
validity for distances comparable to Thomson’s scattering
length. The Casimir-Polder formula is accurate for dis-
tances R satisfying the retarded regime, R ≫ c=ωF, where
ωF is a characteristic frequency. The value of ωF can be
estimated from the polarizability of a quantum harmonic
oscillator [17], as αFω

2
F ¼ e2N=me, where N is the

effective particle number contributing to field fluctuations.
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For the electron-positron field, we obtain that Eq. (3) is
accurate for R ≫ α20=3fsc a0. This condition is strictly satisfied
within the context of our work.
Both Eqs. (3) and (9) employ the dipole approximation

to the field response. Some authors argue that the response
of a quantum field has only dipolar contributions [33] and
in fact the PDDTof an arbitrary field (or matter) system can
be exactly described by an infinite number of dipolar
quantum oscillators [1,17]. However, we rely on a coarse-
grained representation for the PDDT of a quantum field,
which could make multipolar interactions non-negligible
[17]. Because of particle-antiparticle symmetry, the quadru-
pole polarizability vanishes and the first nonvanishing
multipolar polarizability beyond dipole is the octupolar
one. We can estimate the octupolar contribution to ĒSIE by a
generalization of Eqs. (8) and (9) to higher multipoles and
using the quantum scaling law for multipole polarizabilities
derived in Refs. [3,34]. By doing so, we find that the
contribution from a potential octupolar interaction term to
ĒSIE would be vanishingly small (multiplied by α6fsc)
compared to the dipolar one in Eq. (9). The tiny magnitude
of the dipole polarizability of pair excitations in a quantum
field ∝ α46=3fsc in Eq. (2) provides an explanation of why
drastic approximations to the exact vdW/Casimir energy
density seem to yield very accurate results when computing
the SIE density of quantum fields in their vacuum state.
Going beyond the electron-positron field, we can also

calculate the ĒSIE for muon-antimuon and tau-antitau
virtual pair fluctuations. For heavier leptons possessing
the same charge but an arbitrary mass μ, one needs to
replace a0 ¼ ð4πϵ0Þℏ2=mee2 by aμ ¼ ð4πϵ0Þℏ2=μe2 in
Eq. (2), with a corresponding scaling of the vdW radius:
Rμ−=μþ ¼ ðaμ=a0Þ× Re−=eþ ¼ ðme=μÞ× Re−=eþ . These con-
ditions ensure the correct polarizability-mass scaling for
hydrogen-like atoms [26]: αμ−=μþ ¼ αe−=eþ × ðme=μÞ3.
Since both the polarizability and the related volume
of a lepton pair are inversely proportional to the particle
mass cubed, the electron-positron, muon-antimuon,
and tau-antitau quantum fields possess the same polar-
izability density ∝ ϵ0, as they should. Based on Eq. (5), we

obtain Ēð2Þ
SIEðμ−=μþÞ=Ēð2Þ

SIEðe−=eþÞ ¼ ða0=aμÞ4 ¼ ðμ=meÞ4.
However, the total Casimir SIE density given by Eq. (6)
is a product of the pairwise SIE density and the weighted
lattice sum Neff . This effective number of pairwise inter-
acting virtual pairs depends on the lifetime of constituent
particles. Each virtual particle possesses a finite lifetime
τμ ¼ τe × ðme=μÞ, as follows from Heisenberg’s uncer-
tainty principle. For two interacting species, four virtual
particles are present, which requires the renormalization
Neffðμ−=μþÞ=Neffðe−=eþÞ ¼ ðme=μÞ4. This scaling com-

pensates the factor ðμ=meÞ4 in the ratio Ēð2Þ
SIEðμ−=μþÞ=

Ēð2Þ
SIEðe−=eþÞ resulting in the same Casimir SIE density for

electron-positron, muon-antimuon, and tau-antitau fields.

Our arguments based on the uncertainty principle are
supported by the effective Lagrangian approach in quantum
electrodynamics (QED), where each fermionic propagator
is inversely proportional to the particle mass and the
contributions of Feynman diagrams for (two-)photon
exchange between two virtual pairs scale with μ−4 [35].
In particular, the first nonlinear term in the effective
Heisenberg-Euler Lagrangian [35–37] describing inter-
actions between quadratic field fluctuations scales
as μ−4. This fourth-order QED process is closely connected
to our Casimir model [38–40], for both Eq. (6) and
Eq. (11). Thus, we conclude that electrodynamic fields
corresponding to different leptons possess the same
Casimir SIE density.
The extension of our work to fields other than the ones of

charged leptons would require accounting for propagators
other than the electromagnetic one in Eq. (1) and for the
increase of the FSC at high energies [41]. However, the
conceptual idea underlying the presented calculations
should be equally applicable to arbitrary fields. In the
current model, the energy density of a given field depends
on two partially compensating factors determined by the
characteristic length of quantum fluctuations RTh: (i) the
polarizability density that scales ∝ R7

Th, (ii) the (pairwise)
Casimir interaction that scales ∝ R−7

Th . Ultimately, a scale-
invariant value of SIE density equal to Λ for any quantum
field would be the most elegant result and such an outcome
could arise from a subtle compensation between the
polarizability density and the Casimir interaction potential.
To embed our work in the context of other models for the

cosmological constant [42], we note that there is a solid
body of literature attempting to connect the cosmological
and gravitational constants to zero-point fluctuations of
quantum fields. These attempts go back to seminal phe-
nomenological proposals by Dicke [43], Zel’dovich [44],
and Sakharov [45]. However, calculations based on the
direct summation of zero-point energies of quantum fields
overestimate the observed cosmological constant by 40 to
120 orders of magnitude [42]. Interestingly, if instead of the
quantum scaling law for polarizability in Eq. (2) we use the
classical scaling αe−=eþ ∝ R3

e−=eþ, the resultant ĒSIE would
overestimate Λ by 39 orders of magnitude, similar to the
simplistic direct sum over zero-point energies [46].
Modified approaches to calculation of zero-point energies
have been attempted in the past, for example, by Puthoff
[47,48], and more recently by Leonhardt, who proposed to
apply Lifshitz theory with renormalization and obtained a
more reasonable estimate for the energy density of the
electromagnetic vacuum field [49,50].
Instead, the key conceptual advance in our Letter is

to propose that one can define noninteracting particle-
antiparticle fluctuations, with the PDDT given by
α0ðr; r0; iuÞ. These fluctuations then interact through the
electromagnetic field, yielding αλ¼1ðr; r0; iuÞ, whose
coarse-grained representation is given by the rather minute
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homogeneous polarizability in Eq. (2) or the radial shell
polarizability density in Eq. (8). The Casimir interaction
propagated by the respective gauge field then yields a
finite SIE density for any fermionic quantum field. It is
pertinent to draw a parallel between our model and the
calculation of many-electron correlation energies in mol-
ecules and materials based on Eq. (1) [51–53]. For
interacting electrons in matter, the definition of
α0ðr; r0; iuÞ has a high degree of arbitrariness, as it can
be constructed from Hartree-Fock, Kohn-Sham, Wannier
orbitals, or alternatively using quantum harmonic oscilla-
tors to model the response of valence electrons [17,24].
Hence, α0ðr; r0; iuÞ or its coarse-grained representations
are unobservable. In contrast, the interacting macroscopic
polarizability tensor

R
r

R
r0 αλ¼1ðr; r0; iuÞdr0dr is observable

in practice. We are not aware of experimental measure-
ments of the intrinsic polarizability density of the electron-
positron field, however, our Letter makes a verifiable
prediction that quantum fields possess a nonvanishing
(albeit quite small) polarizability density.
In summary, we have proposed a model for quantum

electrodynamic fields endowed with a finite polarizability
density arising from zero-point fluctuations of particle-
antiparticle pairs. We then calculated the Casimir self-
interaction energy density of such quantum fields (owing
to propagation of fluctuations by the electromagnetic field)
and obtained the expected dark-energy equation of state and
excellent numerical agreement with the measured value of
the cosmological constant Λ. Obviously, our work leaves
many open questions concerning the polarizability density of
more general quantum fields and its contribution to the
vacuum self-interaction energy density. The preliminary
connections identified in this Letter between the Casimir
approach and the effective Lagrangian formalism in QED
suggest a possibility to calculate the self-interaction energy
density directly from first principles of quantum field theory.
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