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Temperature is usually defined for physical systems at thermal equilibrium. Nevertheless one may
wonder if it would be possible to attribute a meaningful notion of temperature to an arbitrary quantum state,
beyond simply the thermal (Gibbs) state. In this Letter, we propose such a notion of temperature
considering an operational task, inspired by the zeroth law of thermodynamics. Specifically, we define two
effective temperatures for quantifying the ability of a quantum system to cool down or heat up a thermal
environment. In this way we can associate an operationally meaningful notion of temperature to any
quantum density matrix. We provide general expressions for these effective temperatures, for both single-
and many-copy systems, establishing connections to concepts previously discussed in the literature.
Finally, we consider a more sophisticated scenario where the heat exchange between the system and the
thermal environment is assisted by a quantum reference frame. This leads to an effect of “coherent quantum
catalysis,” where the use of a coherent catalyst allows for exploiting quantum energetic coherences in the
system, now leading to much colder or hotter effective temperatures. We demonstrate our findings using a
two-level atom coupled to a single mode of the electromagnetic field.
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Introduction.—Temperature is a well-defined property of
macroscopic systems in thermal equilibrium [1]. When
considering equilibrium systems of finite size, subtleties on
the notion of temperature can arise due to the breakdown of
the equivalence of statistical ensembles [2–8] and the non-
negligible effect of interactions between constituents [9–
13]. Moving on to nonequilibrium (quantum) systems,
assigning an effective temperature can be useful in certain
physical contexts [14–17]. Given some quantum state ρ
evolving under HamiltonianH, the most common approach
is to assign an effective temperature T� given by the
temperature of an equilibrium (Gibbs) state with the same
average energy, that is

Tr½Hρ� ¼ Tr½HγðT�; HÞ� ð1Þ

where γðT;HÞ≡ e−βH=Z, Z ¼ Tre−βH is the partition
function, and β ¼ 1=kBT (kB ≡ 1). The relevance of the
identification [Eq. (1)] naturally arises in the dynamics of
isolated quantum many-body systems: seminal results
suggest that ρwill become in practice indistinguishable [18]
from γðT�; HÞ after a transient thermalization time [24–30].
Beyond isolated systems, different notions of effective
temperatures have been discussed for characterizing non-
equilibrium states [31,32], and also in the context of
quantum thermal machines [33–39].
Here we propose an alternative and operational approach

for defining temperature for quantum systems. We consider
a system with Hamiltonian H in a quantum state ρ, and
place it in contact with another (reference) system initially
at thermal equilibrium. We then assign two temperatures

for the system, Tc and Th, which correspond to the lowest
and the highest temperatures at which the reference system
can be cooled down or heated up. That is, Tc and Th
characterize the potential of ρ to heat up or cool down a
reference state in thermal equilibrium (see Fig. 1). This
approach establishes a natural direction of heat flow

FIG. 1. Setups used to define effective temperatures for non-
equilibrium quantum systems. (a) Equilibrium setting addressed
by the zeroth law. (b) Setup used to assign effective cold TcðAÞ
and hot ThðAÞ temperatures with system A. (c) The case when
effective temperatures are assigned to multiple copies of A. In
panel (d), we extend the setting by adding a reference frame
(catalyst), i.e., a system that aids the process without providing
heat itself. For details see the main text.
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between ρ and a thermal environment at temperature T:
Heat will always flow toward the environment when T ≤
Tc and, likewise, the environment will always release heat
when T ≥ Th. Instead, for Tc ≤ T ≤ Th, the direction of
heat flow depends on the particular process. As expected,
Tc ≤ T� ≤ Th, with equality when the system itself is in
thermal equilibrium with temperature T�.
We apply this approach to three different situations. First,

we find explicit expressions for the effective temperatures
of quantum systems, which are related to the concept of
virtual temperatures [33–36,40–42]. Second, we show that
for macroscopic quantum systems, the two effective tem-
peratures are closely related to T�. Third, we extend the
framework by introducing a reference frame, or a quantum
catalyst [43–50]. This gives access to strictly colder and
hotter effective temperatures by exploiting energy coher-
ences present in the system.
Operational definition of temperature.—A system S will

be described by a tuple ðHS; ρSÞ, where HS stands for the
system’s Hamiltonian and ρS its density matrix. We say that
a system is in thermal equilibrium at temperature T if its
state can be written as ρS ¼ γðT;HSÞ.
The zeroth law of thermodynamics states that when

system A is in a thermal equilibrium with another system B
that is in a thermal equilibrium with C, then A must be in a
thermal equilibrium with C [see Fig. 1(a)] [1,51].
Importantly, the zeroth law associates temperature with
systems in thermal equilibrium. Here we will use a similar
approach to define effective temperatures for nonequili-
brium systems. We will consider three systems, A, B, and
C, where C is a macroscopic heat bath at temperature T,
system B ¼ ðHB; γðT;HBÞÞ is a thermometer probe, and
A ¼ ðHA; ρAÞ is the quantum system whose effective
temperatures we want to quantify. For that, we consider
the following steps: (i) we couple B to C until B reaches
thermal equilibrium at temperature T, (ii) we decouple
them, and (iii) we couple B to A to infer the effective
temperature of A by measuring B.
Let us now describe in detail step (iii). First, we demand

that energy is preserved within the joint system AB, i.e., the
evolution is described by a unitary process U satisfying
½U;HA þHB� ¼ 0. This ensures that only the energy of A
is used to heat up or cool down the thermometer. Second,
we assume perfect control over the joint system, meaning
we allow for arbitrary processes U. The dynamics is then
characterized by the full set of energy-preserving unitaries
[40,52]. Notice that we make no assumptions about the
strength of interaction (weak or strong), its complexity
(local or collective), or duration (short or long) with respect
to the natural timescales. Third, we assume the initial state
of AB factorizes, i.e., ρAB ¼ ρA ⊗ γBðT;HBÞ, ensuring that
B has a well-defined temperature, and its energy changes
may be interpreted as heat.

The joint state of the system and the thermometer after
the interaction is given by σAB ¼ U½ρA ⊗ γBðT;HBÞ�U†.
The heat transferred to the thermometer is therefore

QðT;HB;UÞ ≔ TrfHB½σB − γBðT;HBÞ�g; ð2Þ
with σB ≔ TrAσAB. It is well known that heat can only flow
in one direction when A is a Gibbs state at some temper-
ature TðAÞ, i.e., ρA ¼ γA½TðAÞ; HA�. More specifically,

QðT;HB;UÞ ≥ 0 for all T ≤ TðAÞ;
QðT;HB;UÞ ≤ 0 for all T ≥ TðAÞ; ð3Þ

which holds for all possible HB and U [53,54]. In other
words, the direction of heat is well defined between Gibbs
states: Heat can only flow from hot to cold, regardless of
the particular thermometer B or process U. Instead, for
nonthermal states the direction of heat flow is not always
unique, as illustrated by its reversal in the presence of
correlations [53–56]. That is, the sign of QðT;HB;UÞ in
general depends on HB and the process U.
The crucial insight of our Letter is that there are

temperatures for which heat has a well-defined direction
even for nonequilibrium states (i.e., it is independent ofHB
and U and depends only on A). Given some A ¼ ðHA; ρAÞ,
we will show that there exist temperatures TcðAÞ and ThðAÞ
that satisfy

QðT;HB;UÞ ≥ 0 for all T ≤ TcðAÞ;
QðT;HB;UÞ ≤ 0 for all T ≥ ThðAÞ; ð4Þ

for all possible HB and U, in analogy with the equilibrium
case [Eq. (3)]. As a consequence, A is effectively hotter or
colder than any equilibrium state below or above TcðAÞ and
ThðAÞ, respectively. Conversely, A has the potential to cool
down equilibrium states with temperature T ≥ TcðAÞ and
heat up states with T ≤ ThðAÞ. Hence, TcðAÞ and ThðAÞ
bound the ability of A to heat up or cool down a thermal
environment.
In order to find the effective cold TcðAÞ and hot ThðAÞ

temperatures, we look for the minimal (maximal) temper-
ature T for which QðT;HB;UÞ is negative (positive) for
some thermometer B and some energy-preserving inter-
action U, i.e.,

TcðAÞ ≔min
HB;U

T

such that QðT;HB;UÞ < 0;

½U;HA þHB� ¼ 0: ð5Þ
Similarly, we define ThðAÞ by replacing max with min
above and reversing the inequality.
Effective temperatures of single-copy quantum sys-

tems.—The protocol discussed above is effectively descri-
bed using a channel acting on the system A:

ETð·Þ ¼ TrBfU½· ⊗ γBðT;HBÞ�U†g: ð6Þ
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This class of channels is known as thermal operations
[40,44,57–60]. We use this correspondence to prove our
first main result. More specifically, for any quantum system
A ¼ ðHA; ρAÞ withHA ¼ P

i ϵijϵiihϵij and pi ≔ hϵijρAjϵii,
we show that the effective temperatures are given by

TcðAÞ ¼ min
i≠j

Tij; ThðAÞ ¼ max
i≠j

Tij; ð7Þ

where Tij ≔ ðϵj − ϵiÞ= logðpi=pjÞ are the virtual temper-
atures of the state [33–36,40–42]. As expected, for Gibbs
states TcðAÞ ¼ ThðAÞ, whereas for nonequilibrium states
TcðAÞ ≠ ThðAÞ. The proofs proceed similarly for both
effective temperatures, so we only discuss TcðAÞ. First,
we show that for any system A there is an interaction
and a thermometer B that can be cooled down when
T ≥ mini≠j Tij. The cooling protocol is simple: Consider
the two-dimensional subspace fjϵki; jϵlig corresponding to
the lowest virtual temperature, i.e., TcðAÞ ¼ Tkl. We then
introduce a two-level thermometer B with levels fjgi; jeig
and energy gap ϵk − ϵl, thus in resonance with the selected
subspace. By coupling such subspaces via an energy-
conserving operation U ¼ e−iHintt acting for time t ¼
π=2 with Hint ¼ jϵlihϵkjA ⊗ jgihejB þ H:c:, the energy of
A will necessarily increase, and hence B will be cooled
down, as desired. Second, we use the resource-theoretic
approach to show that when T ≤ mini≠j Tij, there exists no
protocol that can cool down any thermometer B [61]. This
proves that TcðAÞ is equal to mini≠j Tij. For details see
Appendix A in the Supplemental Material [61].
The effective temperatures can be both positive and

negative. This is a consequence of their operational
character: A system with a negative effective temperature
has its energy population inverted {note that the effective
temperature [Eq. (1)] also becomes negative in this case}.
Therefore, a quantum system with ThðAÞ < 0 can heat up
equilibrium systems at any real temperature T. Similarly,
when TcðAÞ < 0, the system cannot cool down any
equilibrium system, even when its real temperature is
arbitrarily large.
A quantum system A is out of equilibrium with respect to

temperature T when it contains at least one virtual temper-
ature different from T. Moreover, since virtual temperatures
depend only on the occupations in the energy basis, i.e., on
pi ¼ hϵijρAjϵii, superpositions of energy levels have the
same ability to generate heat as corresponding probabilistic
mixtures. This means that energy coherences are irrelevant
from the perspective of cooling or heating the thermometer
—which is intimately connected to the time-translation
symmetry of the allowed operations [59,64–66] We now
discuss two ways to overcome this restriction. First, we
consider processing multiple copies of the system collec-
tively [67–69] and show that the degeneracy of energy
levels allows one to exploit coherence locked in the
quantum system. Second, we extend the framework by

introducing a reference frame (or a catalyst), i.e., a system
that allows one to locally lift some of the restrictions
imposed by the presence of conserved quantities.
Effective temperatures of macroscopic quantum sys-

tems.—Suppose that system A consists of multiple identical
copies, i.e., A≡ An ≔ ðH⊗n

A ; ρ⊗n
A Þ [see Fig. 1(c)]. As we

will see, it is then convenient to extend the definition of
effective temperatures [Eq. (5)] by introducing a parameter
δ > 0 capturing the minimal amount of heat transferred to
(or measured by) the thermometer, i.e.,

TcðA; δÞ ≔ min
HB;U

T

such that QðT;HB;UÞ ≤ −δ;

½U;HA þHB� ¼ 0: ð8Þ

The definition for ThðA; δÞ is obtained by replacing
max with min, reversing the inequality, and chang-
ing the sign of δ. For consistency, we can verify that
limδ→0þTcðA; δÞ≡ TcðAÞ. For macroscopic systems com-
prised of n particles, we require that δ is proportional to n,
so that the transferred heat is also macroscopic. Therefore,
we define the asymptotic effective temperatures as

T∞
c=hðA; δÞ≡ β∞c=hðA; δÞ−1 ≔ lim

n→∞
Tc=hðAn; nδÞ: ð9Þ

In Supplemental Material B [61] we show that β∞c=hðA; δÞ
can be expressed as

β∞c ðA; δÞ ¼
1

δ
fS½γAðEþ δÞ� − SðρAÞg; ð10Þ

β∞h ðA; δÞ ¼
1

δ
fSðρAÞ − S½γAðE − δÞ�g; ð11Þ

where γAðxÞ stands for a Gibbs state with Hamiltonian HA

and average energy x. Notice the change of notation for the
Gibbs state introduced to simplify the formulas that follow.
Furthermore, we introduced a parameter E ≔ trðρAHAÞ,
and SðρÞ ≔ −Trρ log ρ is the von Neuman entropy. It can
be noted that, while TcðAÞ and ThðAÞ correspond to the
minimal and maximal virtual temperatures of A, the
temperatures TcðA; δÞ and ThðA; δÞ depend on the whole
spectrum of ρA and hence all its virtual temperatures.
To develop some intuition about the effective temper-

atures we can look at the thermodynamic limit. Here it
corresponds to the regime with n → ∞ and δ → 0 with A
prepared in a Gibbs state with average energy E, i.e.,
ρA ¼ γAðEÞ. In this regime β∞c=hðA; δÞ both converge to the
usual definition of (inverse) temperature, i.e.,

lim
δ→0

β∞c ðA; δÞ ¼ lim
δ→0

β∞h ðA; δÞ ¼
∂S½γAðEÞ�

∂E
: ð12Þ
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For any quantum state ρA we can further expand up
to Oðδ2Þ,

β∞c=hðA; δÞ ≈�ΔSðρAÞ
δ

þ β�ðEÞ − δ

2Δ2EðγAÞ
; ð13Þ

where ΔSðρAÞ ≔ S½γAðEÞ� − SðρAÞ and Δ2EðγAÞ ≔
tr½H2

AγAðEÞ� − ½HAγAðEÞ�2. Expression (13) naturally con-
nects β∞c=hðA; δÞwith the effective temperature β� defined in
Eq. (1). For generic states βc=hðA; δÞ differ, i.e., quantum
systems can be both hot and cold, even in the asymptotic
limit. Note that βc=hðA; δÞ diverge in the limit δ → 0,
indicating that an asymptotically large source of non-
equilibrium can cool down or heat up reference systems
at any temperature by a sublinear amount in n. To illustrate
how the range of effective temperatures changes by
considering multiple copies of A, in Appendix C of
the Supplemental Material, we discuss a simple toy
example [61].
The effective temperatures [Eq. (10)] directly depend on

SðρAÞ, which means that quantum (energy) coherences are
relevant in this collective scenario, in contrast to the single-
copy case. One way to understand this is that by consid-
ering more copies of the system, one increases the size of
degenerate energy eigenspaces. This enables more flexi-
bility in transferring population, or equivalently, generating
and accepting heat using energy-conserving interactions. In
what follows we discuss an alternative approach to achieve
the same goal.
Catalysis and the role of quantum coherence.—We now

explore the possibility of exploiting energy coherences via
the concept of catalysis [43–48,66,70–79]. In this case an
auxiliary system (the catalyst) provides a phase reference
for the main system. Crucially, after the interaction, the
catalyst must be returned to its initial state. This ensures
that it provides no energy and can be later reused. This
mechanism allows one to take advantage of energy coher-
ences at the level of a single copy of the system. Let us
consider a simple example to illustrate the strength of this
approach.
Consider the evolution of a two-level atom coupled to a

single mode of electromagnetic field in an optical cavity
(see Fig. 2). For that, let A denote the cavity with bosonic
creation and annihilation operators a† and a. Furthermore,
let R be the two-level system with raising and lowering
operators σþ ¼ jeihgj and σ− ¼ jgihej. The interaction is
modeled using the Jaynes-Cummings Hamiltonian [80],
which in the rotating wave approximation reads as

HAR ¼ ωAa†aþ ωRjeihej þHint; ð14Þ

where Hint ≔ gðσþaþ σ−a†Þ, ωA is the angular frequency
of the mode, and ωR is the atomic transition frequency. To
keep this example relatively simple we truncate the number
of Fock states of A to three levels [81]. Moreover, we

assume that the atom is driven on resonance, i.e., ωA ¼ ωR.
This ensures that the unitary evolution UðtÞ ¼ e−iHARt

generated by HAR satisfies ½UðtÞ; HAR� ¼ 0 for all times
t. Our goal is to quantify the effective temperatures of the
cavity, Tc=hðAÞ.
Assume that the field A and atom R start in states

jψiA ¼ ðj0i þ j1i þ j2iÞ=3, ϕR ¼ XðτÞ, where τ is a free
parameter and XðτÞ is the state of the atom obtained by
solving the operator equation

XðτÞ ¼ TrAfUðτÞ½jψihψ jA ⊗ XðτÞ�UðτÞ†g: ð15Þ

In other words, the state of the atom is chosen so that time
t ¼ τ returns to its initial state. We now compare two

FIG. 2. The illustrative example described in the main text.
(a) Sketch of the scenario: a two-level system R interacting
resonantly with a single-mode optical cavity A. (b) Time evolu-
tion of the effective temperatures of both systems. The top figure
shows effective temperatures of A as a function of time t. The
middle panel shows the evolution of the effective temperatures of
R. The bottom panel shows the distance between the states of the
atom at some time t and t ¼ 0 as quantified by the trace distance
Dðρ; σÞ ≔ Tr½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ − σÞ†ðρ − σÞ

p
�=2. Notice that at time t ¼ τ the

system R returns to its initial state; therefore it acts as a catalyst.
The parameters chosen are ωR ¼ ωA ¼ 1, g ¼ 0.1, and τ ¼ 28.5.
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different cases: noninteracting (g ¼ 0) and interacting
(g > 0).
When g ¼ 0 both systems evolve independently. The

effective temperatures Tc=hðAÞ can be computed from
Eq. (7) and, in our particular case, they read as
TcðAÞ ¼ ThðAÞ ¼ 0. As expected, in the absence of inter-
action, the presence of the atom does not influence the
effective temperatures of the electromagnetic field.
When g > 0, the coupling between the field A and the

atom R changes their energy occupations with time,
and therefore also changes their effective temperatures.
After time t ¼ τ the atom returns to its initial state,
ϕRðτÞ ¼ ϕRð0Þ; however the field may end up in a different
state [see Fig. 2(b)]. As a consequence, its spectrum of
virtual temperatures can change, as shown in Fig. 2(b). This
is a generic effect, i.e., for any value of τ we can find the
corresponding state of the atom which returns to its initial
state by solving Eq. (15). Interestingly, after time τ the
photonic mode A has lost quantum coherence, indicating a
tradeoff between coherence of A and its ability to generate a
flow of heat, as captured by the effective temperatures. This
indicates a genuinely quantum mechanism that exploits
energy coherence to generate the desired flow of heat.
We now ask how general this behavior is, i.e., what are the

effective temperatures when using general catalysts? For
that, we shall now consider arbitrary (energy-conserving)
interactions and arbitrary states of the catalyst. In
Supplemental Material E [61], we show that, via a catalytic
system, one can reach the same effective temperatures as in
the macroscopic case of Eq. (9). This naturally connects the
two approaches considered. Importantly, in this case,
system A is microscopic, i.e., δ quantifies the total trans-
ferred heat (rather than heat per particle). Moreover, no
catalyst R that remains unchanged can lead to lower cold
and higher hot effective temperatures.
Discussion.—We proposed an operational definition of

temperature for nonequilibrium quantum systems. We
defined two effective temperatures that quantify the ability
of a quantum state to generate a flow of heat when coupled
to a thermal environment (thermometer). We showed that
these effective temperatures are given by the maximal and
minimal virtual temperatures of the system and connected
them with the effective temperature T� in the asymptotic
limit. We then extended this setting by allowing for the use
of coherent reference frames, and found that energy
coherences can influence effective temperatures.
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