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Bell nonlocality and Kochen-Specker contextuality are two remarkable nonclassical features of quantum
theory, related to strong correlations between outcomes of measurements performed on quantum systems.
Both phenomena can be witnessed by the violation of certain inequalities, the simplest and most important
of which are the Clauser-Horne-Shimony-Holt (CHSH) and the Klyachko-Can-Binicioğlu-Shumovski
(KCBS), for Bell nonlocality and Kochen-Specker contextuality, respectively. It has been shown that, using
the most common interpretation of Bell scenarios, quantum systems cannot violate both inequalities
concomitantly, thus suggesting a monogamous relation between the two phenomena. In this Letter, we
show that the joint consideration of the CHSH and KCBS inequalities naturally calls for the so-called
generalized Bell scenarios, which, contrary to the previous results, allows for joint violation of them. In
fact, this result is not a special feature of such inequalities: We provide very strong evidence that there is no
monogamy between nonlocality and contextuality in any scenario where both phenomena can be observed.
We also implement a photonic experiment to test the synchronous violation of both CHSH and KCBS
inequalities. Our results agree with the theoretical predictions, thereby providing experimental proof of the
coexistence of Bell nonlocality and contextuality in the simplest scenario, and lead to novel possibilities
where both concepts could be jointly employed for quantum information processing protocols.
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Introduction.—Quantum theory is notable for being
intriguing and counterintuitive, a fact due, mostly, to
predictions and concepts that diverge from those of classical
theories. Among such nonclassical concepts are Bell non-
locality [1,2] and Kochen-Specker contextuality [3,4].
Classical reasoning assumes the possibility of well-

defined values for every physical quantity. Probabilities
are used as a consequence of partial knowledge one has
regarding the real state of affairs. Prior to quantum theory,
there was no reason to distrust such a view.
Bell nonlocality refers to stronger-than-classical corre-

lations on outcomes of measurements performed by
distant parties on composite systems. Classical reasoning
allows for the possibility of the so-called local hidden
variables (LHVs) as a mathematical description of every
correlation in spacelike separated measurements. In a
seminal paper [1], Bell showed that quantum theory
admits correlations that cannot be explained by any
LHV model, a result later known as Bell’s theorem. The
nonlocal correlations violate inequalities that are satisfied
in any LHV theory, the so-called Bell inequalities, the
simplest and best known of which is the Clauser-
Horne-Shimony-Holt (CHSH) inequality [5]. It is worth

mentioning that Bell nonlocality in quantum systems has
been extensively tested and verified in several seminal
experiments [6–11].
Contextuality is a concept similar to nonlocality; in fact,

it can be understood as a generalization of nonlocality
that manifests also for single systems. While, in classical
theories, every pair of measurements can be jointly per-
formed, at least in principle [12], in quantum theory, pairs of
measurements are usually incompatible, preventing their
joint measurability. Sets of compatible measurements are
called contexts, and theories in which it is possible to assign
values to the outcomes of measurements irrespective of the
context in which they are measured are called noncontextual
hidden variable (NCHV) theories. Kochen and Specker [4]
and Bell [3] were the first to note that quantum theory admits
correlations that cannot be explained by any NCHVmodel, a
result later known as Kochen-Specker theorem. In 2008,
Klyachko et al. [13] noticed that, as for nonlocality, there
are inequalities that hold for all noncontextual correlations
which can be violated for single quantum systems. The
Klyachko-Can-Binicioğlu-Shumovski (KCBS) inequality
became the simplest example of contextuality inequalities.
Interestingly, there are other contextuality inequalities that,
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in contrast with KCBS, can be violated by every quantum
state [14,15], thus revealing a property of the measurements
known as state-independent contextuality [16–18].
Despite their common roots related to the search

for hidden variables in quantum theory, nonlocality
and contextuality were developed through very distinct
research programs, and it was only a few years ago that
mathematical approaches to unify both concepts were
proposed [19–21]. The first proposal to consider non-
locality and contextuality in the same system is due to
Kurzyński, Cabello, and Kaszlikowski [22]: Two parties
could make a CHSH inequality test while one of the parties
would also evaluate the KCBS inequality in a subsystem,
using, among others, the same incompatible measurements
applied in the nonlocality test. The authors proved that
in quantum theory—and in more general nondisturbing
theories—there exists a trade-off relation between non-
locality and contextuality indicators, allowing for the
violation of only one of these tested inequalities, and
conjectured a fundamental monogamy relation between
nonlocality and (state-dependent) contextuality. This
monogamy relation was experimentally verified by Zhan
et al. [23]; more general monogamy relations were also
identified in other scenarios [24–30]. It is worth mention-
ing, though, that such monogamy relations do not hold
for state-independent contextuality, since the contextuality
test is trivial. Recently, simultaneous observation of Bell
nonlocality and state-independent Kochen-Specker con-
textuality was reported [31].
In thework byKurzyński, Cabello, andKaszlikowski [22],

there was the implicit assumption that nonlocality tests could
consider only one measurement from each party. Since, for
instance, a test of the KCBS inequality demands five different
measurements, each ofwhich is performed in a context with a
second compatible one, each measurement used in CHSH
violation could also be supplemented by a compatible one,
leading to new generalized Bell inequalities, in the sense
of Ref. [32].
In this Letter, we revisit the scenario considered in

Ref. [22], and, by considering compatible measurements
in the nonlocality test, we experimentally demonstrate that
quantum systems can, actually, lead to the synchronous
violation of both CHSH and KCBS inequalities. We prove,
thus, that there is no fundamental monogamy relation
between nonlocality and state-dependent contextuality,
even in this simplest scenario where such monogamy
was believed to hold. More generally, we show that
quantum systems can lead to the concomitant observation
of both phenomena in thousands of important scenarios,
thus providing strong evidence that, in fact, monogamy
between Bell nonlocality and contextuality may never hold.
Given that both Bell nonlocality and contextuality are
important resources for quantum information processing
protocols, we believe that this work may be a first step in
the direction of devising novel information processing

tasks where both nonclassical resources can be used
concomitantly.
The scenario.—Consider the following measurement

scenario (its main ideas and concepts can be extended in
a straightforward manner to more general scenarios): Two
parties, Alice and Bob, run several rounds of experiments
on spatially separated laboratories, each on its respective
subsystem of a composite physical system, identically
prepared in every round. Let Alice be able to perform
mA ¼ jX j possible measurements, labeled by x ∈ X, each
with oA ¼ jAj possible outcomes, labeled by a ∈ A. Let
Bob be able to perform mB ¼ jYj possible measurements,
labeled by y ∈ Y, each with oB ¼ jBj possible outcomes,
labeled by b ∈ B. Assume, additionally, that some mea-
surements of Bob are compatible, meaning that, in each
round, Bob is able to perform subsets of measurements
concomitantly. Let C ¼ fyg be the set contexts of Bob,
each element y of which represents a tuple of compatible
measurements. Let b ∈ Bjyj be the (ordered) tuple of
outcomes of the tuple of measurements y. After
sufficiently many rounds, the parties are able to estimate
the following set of probabilities, the so-called behavior of
the experiment:

p ¼ fpða;bjx; yÞja ∈ A;b ∈ Bjyj; x ∈ X ; y ∈ Cg: ð1Þ

Let the measurements be performed in an information-
ally separated way, so that the following no-signalling
conditions hold:X
a

pða;bjx; yÞ ¼ pðbjx; yÞ ¼ pðbjyÞ; ∀ b; y; ð2aÞ

X
b

pða;bjx; yÞ ¼ pðajx; yÞ ¼ pðajxÞ; ∀ a; x: ð2bÞ

Following the formalism presented in Ref. [32], we
define the behavior to be local in this scenario or, in other
words, to admit an LHV model, if there are a variable λ and
probability distributions pðλÞ, pðajx; λÞ, and pðbjy; λÞ such
that, for all outcomes and measurements,

pða;bjx; yÞ ¼
Z

pðajx; λÞpðbjy; λÞpðλÞdλ: ð3Þ

Consider the marginal behavior of Bob’s experiment:

pB ¼ fpðbjyÞjb ∈ Bjyj; y ∈ Cg: ð4Þ
Assume it obeys the no-disturbance conditions:X

b=b

pðbjyÞ ¼ pðbjyÞ ¼ pðbjyÞ; ∀ b; y; ð5Þ

where b=b means that the sum is over all labels in b
except b. We define the marginal behavior of Bob to be
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noncontextual, or to admit an NCHV model, if there are a
variable σ and probability distributions pðbjy; σÞ and pðσÞ
such that, for all outcomes of all contexts,

pðbjyÞ ¼
Z �Y

y∈y
pðbjy; σÞ

�
pðσÞdσ: ð6Þ

With all these definitions in place, let us focus on the
particular scenario we are interested in. Let Alice choose
between two dichotomic measurements X ¼ f0; 1g,
A ¼ f−1; 1g, and let Bob have five dichotomic measure-
ments Y ¼ f0; 1; 2; 3; 4g, B ¼ f−1; 1g, available with
measurement contexts C ¼ ff0; 1g; f1; 2g; f2; 3g; f3; 4g;
f4; 0gg. The compatibility relations between all measure-
ments are represented in Fig. 1. The following version of
the CHSH inequality holds for all behaviors that are local
[according to the definition in Eq. (3)]:

αCHSH ¼ hA0B0i þ hA0B2B3i þ hA1B0i − hA1B2B3i ⩽
LHV

2;

ð7Þ

where

hAxByi ¼ pða ¼ bjx; yÞ − pða ≠ bjx; yÞ; ð8aÞ

hAxByBy0 i ¼ pða ¼ b · b0jx; y; y0Þ − pða ≠ b · b0jx; y; y0Þ:
ð8bÞ

Note that, according to the definitions above, the joint
measurement of B2B3 can be regarded as a single dicho-
tomic measurement whose outcome is given by the product
b · b0, where b and b0 are the outcomes of B2 and B3,
respectively. The left-hand side of inequality (7) is, in

essence, equivalent to the left-hand side of the standard
CHSH inequality, hence the same local bound.
The marginal scenario of Bob is exactly the one

considered by Klyachko and co-authors [13]. The marginal
behavior pB is contextual if and only if it violates the KCBS
inequality (or one of the inequalities obtained from it by
relabelings of measurements and/or outcomes):

βKCBS ¼ hB0B1i þ hB1B2i þ B2B3i

þ hB3B4i − hB4B0i ⩽
NCHV

3; ð9Þ

where

hByBy0 i ¼ pðb ¼ b0jy; y0Þ − pðb ≠ b0jy; y0Þ: ð10Þ
Theoretical results.—The first theoretical result of this

Letter is the following theorem.
Theorem 1.—The CHSH inequality (7) and the KCBS

inequality (9) can be concomitantly violated in quantum
theory.
Proof.—We give a direct proof by showing state spaces,

measurements, and a parametrized family of states obeying
all the conditions of the scenario and leading to concomi-
tant violations of both inequalities, for some values of the
parameters. The systems of Alice and Bob are a qubit and a
qutrit, respectively, whose corresponding basis states are
fj0i; j1ig and fj0i; j1i; j2ig. (i) For Alice, choose meas-
urement x to be given by the Pauli observables Ax:

A0 ¼ σz; A1 ¼ σx: ð11Þ

(ii) Measurement y of Bob can be represented by an
observable By with eigenvalues in f�1g given as

Bj ¼ ð−1Þjð1 − 2jvjihvjjÞ; ð12aÞ

for j ∈ f0; 1; 2; 3; 4g, where 1 is the identity matrix and

jvji ∝
"
cos

�
4πj
5

�
j0i þ sin

�
4πj
5

�
j1i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

�
π

5

�s
j2i

#
:

ð12bÞ

Notice that hvjjvðjþ1Þ mod 5i ¼ 0, which implies that Bj

and Bð1þjÞ mod 5 commute and, hence, are compatible.
(iii) Consider the one-parameter family of states:

jΨðϕÞi ¼ cosðϕÞjui þ sinðϕÞjvi; ð13aÞ

where, for θu ∼ 2.868 and θv ∼ 1.449,

jui ¼ ½cosðθuÞj0i þ sinðθuÞj1i� ⊗ j2i; ð13bÞ

jvi ¼ ½cosðθvÞj0i þ sinðθvÞj1i� ⊗ j0i: ð13cÞ

FIG. 1. Representation of the compatibility relations between
all measurements in the experiment. Each measurement is
represented by a vertex, and vertices connected by an edge
represent compatible measurements. Both measurements of Alice
(white vertices) are compatible with all measurements of Bob
(black vertices); compatibility of measurements of Bob is
represented by a pentagon. Sets of measurements that are two-
by-two compatible are jointly compatible (e.g., fA0; B0; B1g).
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According to Born’s rule, we have

hAxByBy0 i ¼ hΨðϕÞjðAx ⊗ ByBy0 ÞjΨðϕÞi; ð14aÞ

hAxByi ¼ hΨðϕÞjðAx ⊗ ByÞjΨðϕÞi: ð14bÞ
Any choice of ϕ ∈ ½0.288; 0.553� completes the proof. ▪
In the proof above, the measurements of Alice are usual

for the maximal CHSH violation, and the measurements
of Bob are usual for the maximal KCBS violation. The
parameters θu and θv were obtained by numerical opti-
mization in the corresponding family, for fixed values of ϕ.
Table I may help in understanding the role played by ϕ.
We now extend the result to more general scenarios, by

stating the following theorem, the proof of which we show
in Supplemental Material [33].
Theorem 2.—Bell nonlocality and contextuality can

be concomitantly observed in all scenarios where Alice
performs two dichotomic measurements and Bob performs
n dichotomic measurements, pairwise compatible accord-
ing to an n-cycle graph, for 4 ≤ n ≤ 104.
It is worth mentioning that the scenario considered in

Theorem 1 is a particular case of the scenarios mentioned in
Theorem 2, for n ¼ 5. Even though we provide numerical
proof for only a finite number of scenarios, we state the
following.
Conjecture.—Bell nonlocality and contextuality can

be concomitantly observed in all scenarios where Alice
performs two dichotomic measurements and Bob performs
n dichotomic measurements, pairwise compatible accord-
ing to an n-cycle graph, for all n.
The n-cycle scenarios [40] are building blocks for the

study of contextuality: It was proven in Ref. [41] that
quantum contextuality is possible only in measurement
scenarios where the compatibility graph of measurements
has an induced n-cycle graph, with n ≥ 4. Hence, in all

scenarios where nonlocality and contextuality are possible,
there will be a subset composed of two measurements
of Alice and n of Bob, each of which have a subset of two
outcomes, such that a scenario as the one in Theorem 2
can be effectively considered [33]. Hence, we state the
following.
Remark.—If the conjecture holds, there is no monogamy

relation between Bell nonlocality and state-dependent
contextuality in any scenario where both phenomena can
be observed in quantum systems.
Experimental realization.—To experimentally test the

concomitant violations of both KCBS and CHSH inequal-
ities, we set up an experiment where pairs of photons
were employed to encode pairs of qubit-qutrit systems.
Schematics of the setup are represented in Fig. 2.
In each round of the experiment, the photons are

prepared in one of the states jΨðϕÞi of the one-parameter
family defined in Eq. (13). The qubit system is encoded in
the polarization degree of freedom of one photon of the
entangled pair, and the qutrit system is hybridly encoded in
both the polarizations and the spatial modes of the other
photon of the pair. Measurement of one of the observables
given in Eq. (11) is, then, performed in the qubit photon,
while sequential measurements of a pair of compatible
observables given in Eq. (12) are performed in the qutrit
photon. Details of the implementation are provided in
Supplemental Material [33].
We produce 11 points αCHSH − βKCBS, corresponding to

11 different input states jΨiðϕÞi (i ¼ 1;…; 11). The exper-
imental results on the average values of the CHSH and
KCBS operators are shown in Fig. 3 and Table I.
Synchronous violation of both KCBS and CHSH in-
equalities is observed for the states jΨ5ðϕÞi, jΨ6ðϕÞi,

TABLE I. Experimental data of αCHSH and βKCBS for 11 input
states. Error bars are due to the statistical uncertainty in photon-
number counting. States 1–4 violate the KCBS inequality but not
the CHSH inequality; states 5–7 violate both inequalities; and
states 8–11 violate the CHSH inequality only.

State ϕ(rad) αthCHSH αexpCHSH βthKCBS βexpKCBS

jΨ1i 0 1.1188 1.1043(438) 3.9443 3.9069(518)
jΨ2i 0.096 1.4293 1.4141(448) 3.9129 3.8728(514)
jΨ3i 0.192 1.7269 1.7083(438) 3.8199 3.7826(510)
jΨ4i 0.288 2.0005 1.9813(450) 3.6688 3.6339(536)

jΨ5i 0.351 2.1622 2.1382(442) 3.5405 3.5034(529)
jΨ6i 0.421 2.3215 2.2972(446) 3.3739 3.3397(446)
jΨ7i 0.487 2.4495 2.4246(423) 3.1964 3.1580(506)

jΨ8i 0.553 2.5536 2.5291(435) 3.0021 2.9684(517)
jΨ9i 0.631 2.6433 2.6164(451) 2.7556 2.7277(537)
jΨ10i 0.708 2.6955 2.6739(468) 2.4998 2.4726(555)
jΨ11i 0.785 2.7075 2.6871(465) 2.2379 2.2065(553)

FIG. 2. Illustration of the experimental setup. Polarization-
entangled photon pairs are generated via type-I spontaneous para-
metric down-conversion where two joint β-BBO crystals are
pumped by a continuous wave diode laser. Qubit is encoded in
the horizontal and vertical polarizations of one photon of each pair,
while qutrit is encoded in both polarizations and spatialmodes of the
other photons of the entangled pairs, which are split in different
paths dependent on their polarizations via a beam displacer (BD).
For Alice, observables Ai are measured via standard polarization
measurements using a half-wave place (HWP) and a BD. For Bob,
cascade Mach-Zehnder interferometers for sequentially measuring
observablesBj andBðjþ1Þ mod 5 are used to test theKCBS inequality.
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and jΨ7ðϕÞi with ϕ ¼ 0.351, 0.421, 0.487, respectively.
For jΨ5ðϕÞi, αCHSH ¼ 2.1382� 0.0442 violates the local
bound of the inequality by 3 standard deviations and is in
great agreement with the quantum prediction 2.1622. Also,
βKCBS ¼ 3.5034� 0.0529 violates the noncontextual
bound of the KCBS inequality by 9 standard deviations
and is in great agreement with quantum prediction 3.5405.
For jΨ6ðϕÞi, the CHSH and KCBS inequalities are violated
by 6 and 7 standard deviations, respectively. For jΨ7ðϕÞi,
the violations are by 10 and 3 standard deviations,
respectively.
To validate nondisturbance in the data and the compat-

ibility between pairs of observables of Bob, we computed,
for each state, the distance

P
5
j¼1ðpj − p0

jÞ2, where pj is the
estimated probability of outcome b ¼ 1 of the observable
Bj measured in one context and p0

j is the corresponding
probability of the same observable measured in the other
context. As shown in Supplemental Material [33], the
distances for all the states being tested are small enough
(<0.0005), which indicates that a very good level of
nondisturbance and compatibility between observables
holds in our experiment.
Conclusion and discussion.—In Ref. [22], the authors

showed that the CHSH inequality and the KCBS inequality
could not be violated simultaneously by quantum systems.
Their proof uses a usual hypothesis for Bell scenarios,
that each part uses a single measurement per round in the
nonlocality test. However, since one part is necessarily

measuring other compatible observables in order to show
contextuality, it is natural to use, instead, the locality
concept of Ref. [32], that makes use of all data available.
In this Letter, we show that, using a more natural notion

of locality, the data available in a joint test of CHSH and
KCBS can produce joint violation of both inequalities,
defying the concept of monogamy between contextuality
and nonlocality. In fact, by constructing examples of states
and measurements that lead to joint violations of Bell and
noncontextuality inequalities, we show that both nonlocal-
ity and contextuality can be observed in thousands of
relevant scenarios. Since such scenarios necessarily appear
from subsets of measurements in all scenarios where
quantum nonlocality and contextuality are possible, we
provide clear evidence that monogamy of both phenomena
may never hold in its stronger sense. We also employ a
photonic implementation to experimentally demonstrate,
for the first time, the synchronous observation of both
Bell nonlocality and state-dependent contextuality in a
simple scenario. Our experimental results agree with
theoretical predictions, providing a proof that these phe-
nomena not only are nonmonogamous, but may be
observed and manipulated in simple quantum systems.
There are several results on monogamy between Bell

inequalities and noncontextuality inequalities, such as the
results in Refs. [22,29,30]. They, however, rely on the
assumption that nonlocality tests are carried out with a
subset of the available data, namely, multipartite correla-
tions that take into account only one measurement of each
part. In essence, the inequalities we investigate in this work
are the same as some considered in previous works; the
main difference is that we take into account local compat-
ible measurements in their evaluation. Given that we
manage to observe nonmonogamy in pairs of inequalities
that were proven to be monogamous (under different
hypotheses), our findings show that such monogamy
results cannot be directly extended to the formalism that
we adopt here, introduced in Ref. [32].
From the fundamental point of view, the results pre-

sented in this Letter shine new light on the relationship
between two of the most important phenomena of the
foundations of quantum physics. From the practical point
of view, on the other hand, considering the individual
importance of Bell nonlocality and contextuality to quan-
tum information science, quantum cryptography, and
quantum computing, we believe that this work may lead
to novel possibilities where both concepts could be jointly
employed for quantum information processing protocols.
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