
Emergence of Polarization in Coevolving Networks

Jiazhen Liu ,1 Shengda Huang ,1 Nathaniel M. Aden,1 Neil F. Johnson ,2 and Chaoming Song 1,*

1Department of Physics, University of Miami, Coral Gables, Florida 33142, USA
2Physics Department, George Washington University, Washington D.C. 20052, USA

(Received 26 May 2022; revised 21 September 2022; accepted 18 November 2022; published 18 January 2023)

Polarization is a ubiquitous phenomenon in social systems. Empirical studies document substantial
evidence for opinion polarization across social media, showing a typical bipolarized pattern devising
individuals into two groups with opposite opinions. While coevolving network models have been proposed
to understand polarization, existing works cannot generate a stable bipolarized structure. Moreover, a
quantitative and comprehensive theoretical framework capturing generic mechanisms governing polari-
zation remains unaddressed. In this Letter, we discover a universal scaling law for opinion distributions,
characterized by a set of scaling exponents. These exponents classify social systems into bipolarized and
depolarized phases. We find two generic mechanisms governing the polarization dynamics and propose a
coevolving framework that counts for opinion dynamics and network evolution simultaneously. Under a
few generic assumptions on social interactions, we find a stable bipolarized community structure emerges
naturally from the coevolving dynamics. Our theory analytically predicts two-phase transitions across three
different polarization phases in line with the empirical observations for the Facebook and blogosphere data
sets. Our theory not only accounts for the empirically observed scaling laws but also allows us to predict
scaling exponents quantitatively.
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Recently published discourse around opinion polariza-
tion, a process by which the opposition of opinions
increases with time, has received much attention [1–4].
Empirical studies observe a typical bipolarized pattern
where individuals are divided into two groups with radi-
cally opposite opinions. For instance, the political division
between liberal and conservative parties reflects the hetero-
geneity in opinions regarding political orientations. These
different attitudes are observed on social media [5–10],
finding that the most frequently shared political opinions
are aligned with a large proportion of the liberal or
conservative population, i.e., the opinion bipolarization.
On the other hand, empirical data also show a depolari-
zation phase for some systems, where opinion distribution
peaks around a neutral state with a significant variance in
nonpolitical fields [5].
Empirical studies show that the echo chamber effect

underlies the opinion polarization in social networks
[6,7,11,12], suggesting that like-minded users tend to
interact [5,6,13]. Indeed, the coexistence of polarization
of opinions and network structures implies that the inter-
play between opinion and network dynamics plays an
essential role in polarization. While growing coevolving
models are proposed to understand mutual interactions
between opinion and network structures, these studies did
not focus specifically on opinion polarization [14–17].
More recently, a reinforced coevolving model has been

proposed to explain network polarization [18,19]. The
reinforcement model (RM) generates either a stable

monopolarized phase where everyone leans toward one-
sided opinions or a global consensus phase where everyone
has the same neutral opinion. While a metastable bipolar-
ized pattern has been observed numerically, it only appears
temporarily and degenerates rapidly to a monopolarized
pattern. Moreover, its occurrence heavily relies on the
initial state.
While the partial success of the RM model hints that

polarization patterns might originate from the coevolving
dynamics, the discrepancy between the existing models and
the stable bipolarized pattern observed empirically has a
deep origin. Indeed, the existing polarization modeling
framework is a variation of synchronization models, where
individuals synchronize to a single state when the system
falls into an ordered phase. To capture a bipolarized
structure, however, one requires a different framework.
Moreover, coevolving network models are infamously
difficult to solve due to the complicated interplay between
opinion and network structure. Hence, existing models
mostly rely on numerical simulations and qualitative
approximations, and a quantitative model that accounts
for the empirically observed bipolarized pattern is missing.
In this Letter, we report a universal scaling law charac-

terized by a set of scaling exponents for empirical opinion
distributions. These exponents classify social systems into
polarization and depolarization phases. To explain this
finding, we propose two ubiquitous mechanisms for the
polarization dynamics. (1) Opinion homogenization:
Individuals’ opinions are influenced by their neighbors
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in a social network and tend to converge to similar views
[20–24]. (2) Homophily clustering:Social connections
evolve with time, where individuals tend to connect to
those with similar beliefs. Consequently, similar individ-
uals group together to form clusters [6–8,11].
These two mechanisms lead to the entanglement of

network evolution with opinion dynamics. Therefore, we
propose a generic coevolving framework capturing the
interplay between opinion dynamics and network evolu-
tion. We find the exact solution of the proposed modeling
framework and predict analytically the universal scaling
laws observed in the empirical data. We calculate the phase
diagrams analytically for the proposed model, predicting
three stable new phases: (i) polarization, (ii) partial polari-
zation, and (iii) depolarization, where both polarization and
partial polarization phases show a stable bipolarized
pattern. To our best knowledge, we offer the first coevolv-
ing network model that predicts a stable bipolarized pattern
analytically, validated by numerical simulation and empiri-
cal measurements.
Experimental observations.—We use two data sets to

uncover the polarization. The first data set consists of the
500 most shared online domains on Facebook collected [5].
These domains are classified as either hard content (FBHC)
or soft content (FBSC). The second data set consists of
1490 blogs and 19 090 references in the blogosphere [25].
We compute the mean score of political leanings s for each
domain or blog, where s ranges from −1 (liberal) to 1
(conservative) [see Supplemental Material (SM) [26] for
details]. Figure 1(a) depicts the blogosphere network,
suggesting that this network is polarized into two opposite
communities, a phenomenon known as the echo chamber
[6,7,11,12,18].
To quantify the observed polarization, The scatter plot in

Fig. 2 depicts the opinion distribution PðsÞ for all three
empirical data sets. We find that the opinion distributions in
two politics-related data sets (FBHC and blogosphere) are
U shaped, suggesting a polarization phase. In contrast,
opinions in the FBSC data set are inverse U-shaped
distributed, indicating a depolarization phase. To inves-
tigate the scaling relation between the population size and
opinion extremeness, we plot PðsÞ as a function of 1� s in
the insets of Figs. 2(a)–2(c), where 1� s measures the
opinion deviation from the most extreme �1 ones. We find

PðsÞ ∼
(
ð1 − sÞδþ s → 1;

ð1þ sÞδ− s → −1;
ð1Þ

satisfying power laws, where δ� characterizes the power-
law exponents when opinion s approaches �1. The
negative exponent values indicate that the population
increases with the extremeness of their opinions and
diverges when the opinion score s reaches limiting cases
�1. In contrast, positive δ� exponents indicate PðsÞ is
peaked around 0. Therefore, the exponents δ� characterize
polarization, i.e., δ� < 0 and > 0 for polarized and
depolarized systems, respectively.
To explore the impact of the opinion’s polarization on the

network structure, we measured the average degree k̄ as a
function of the opinion s for the blogosphere data set. The
scatter plot in Fig. 2(d) shows k̄ increases with the
extremeness of opinion score s, indicating that users
who hold extreme political opinions are more likely to
be the network’s hubs. We further measured the joint
opinion distribution Qðs; s0Þ on each edge of the blogo-
sphere network, which computes the number of edges

(a) Blogosphere (b) Minimal Model

FIG. 1. Polarized networks. (a) The blogosphere network.
Colors represent political opinions, i.e., blue for liberals and
red for conservatives. (b) A social network generated by
numerical simulations of our model for the polarization phase.
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FIG. 2. Empirical measures and theoretical predictions. (a)–
(c) The empirical (dots) and theoretical results (green curves) of
opinion distributions for FBHC, FBSC, and blogosphere. The
scatter plots in the insets indicate that empirical opinion dis-
tributions follow power laws. The solid lines represent our
theoretical prediction from our model. (d) The empirical results
and theoretical predictions of the correlation between the net-
work’s degree and opinions for the blogosphere. (e) and (f) Heat
maps for the empirical and theoretical normalized joint-opinion
distributions.
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connected from an individual with opinion s to another
with s0. Figure 2(e) plots the normalized joint opinion
distribution Rðs; s0Þ ¼ ðQðs; s0ÞÞ=ðPðsÞPðs0ÞÞ, measuring
the deviations from the uncorrelated distribution [27]. We
found a strong enhancement of the number of two con-
necting agents with similar opinions and suppression of the
number of two connecting agents with dissimilar opinions,
indicating the existence of homophily clustering in the real-
world social network [Fig. 1(a)].
Modeling framework.—To account for the empirical

observations, we consider a coevolving network consisting
of N interactive agents, each with an opinion s, varying
continuously between −1 and 1. Agents’ connection is
described by an adjacency matrix A, where the matrix
element Aij ¼ 1 or 0 represents the agent i being connected
or disconnected to j. Both agents’ opinions and the
connections among them evolve in continuous time t.
Moreover, we require the opinion dynamics and network
evolution coupled together, satisfying two intrinsic mech-
anisms: (1) opinion homogenization, that is, the change of
an agent’s opinion is influenced by the opinions of its
neighbors and tends to change to similar views; (2) homo-
phily clustering, that describes the social connections being
more likely established if agents hold similar views.
The two mechanisms are coupled dynamically with the
coevolution of opinions and social connections. Below we
discuss the proposed coevolving dynamics in detail.
Opinion homogenization.—To model opinion homo-

genization, we assume the opinion dynamic follows

dsi ¼ μðsi; s⃗;AÞdtþ σðsiÞdWt; ð2Þ
where s⃗ ¼ ðs1; s2;…; sNÞ represents the set of opinions of
all agents, and si is the opinion of agent i. A is the
adjacency matrix of the agents, and Wt is the standard
Wiener process. μ is the drift term that controls the change
of opinions on average, and σ is the diffusion term that
controls the variance of opinion dynamics. Moreover, we
assume that the opinion drift μ depends on the opinions of
agent i and its neighbors, satisfying

μi ¼
X
hi;ji

Fðsi; sjÞ ¼
XN
j¼1

AijFðsi; sjÞ; ð3Þ

where hi; ji summing over interactions across all
neighbors of i [22,23,28–31]. The pairwise force
Fðsi; sjÞ quantifies the interaction between individuals i
and j. The opinion homogenization requires Fðs; sÞ ¼ 0
and ∂sFðs; s0 ¼ sÞ < 0. On the other hand, the diffusion
DðsÞ≡ σðsÞ2=2 depends only on each agent’s own opinion
s. The boundness of opinion requires the vanishing of the
diffusion at the boundaries, i.e., Dðs ¼ �1Þ ¼ 0, implying
a Taylor expansion, DðsÞ ¼ ðσðsÞ2=2Þ ¼ ðσ20=2Þð1 − s2Þþ
O½ð1 − s2Þ2�. Solving Eq. (2) leads to the time evolution for
single-agent opinion

∂Pðs;tÞ
∂ðαtÞ ¼−

∂

∂s

Z
1

−1
Fðs;s0ÞQðs;s0;tÞds0 þ ∂

2

∂s2
½DðsÞPðs;tÞ�;

ð4Þ

where the integral captures the neighboring interactions,
since Qðs; s0; tÞ depends on the underlying network A
implicitly.
Homophily clustering.—To model homophily cluster-

ing, we assume that agents with similar opinions are more
likely to be connected. Specifically, an agent i will connect
to an unlinked agent j to construct a new edge with a
probability rate γþðsi; sjÞ=N, where si and sj are the
opinions for agents i and j, respectively. The factor 1=N
guarantees the sparsity of the network. At the same time,
an agent i will disconnect with a linked agent j with
probability rate γ−ðsi; sjÞ, leading to annihilating an
existing edge. That is,

dP½Aijð0 → 1Þ� ¼ γþðsi; sjÞ
N

dt; ð5aÞ

dP½Aijð1 → 0Þ� ¼ γ−ðsi; sjÞdt: ð5bÞ

To capture the homophily clustering, we assume that γ�
depends on the opinions of the agent i and its neighbors j.
This dependency leads to the coupling of network evolu-
tion with opinion dynamics.
However, we notice that in most social media, opinion

changes are much slower than network evolution. To
quantify their relative timescales, we rescale the opinion
drift F → αF and diffusion D → αD by a factor α that
characterizes the opinion update rate relative to the network
evolution. In terms of the power expansion of α, we find the
time evolution of the joint opinion distribution Qðs; s0; tÞ
satisfies

∂Qðs; s0; tÞ
∂t

¼ γþðs; s0ÞPðs; tÞPðs0; tÞ
− γ−ðs; s0ÞQðs; s0; tÞ þOðαÞ; ð6Þ

whereOðαÞ term captures higher-order corrections. Wewill
keep our discussion below at the limit α → 0, i.e., the
network evolves adiabatically, and OðαÞ will be omitted
under this adiabatic approximation.
Stationary solution.—Below we will focus on the sta-

tionary solution of the proposed framework. Equation (6)
leads to the stationary joint opinion distribution,Qstðs; s0Þ ¼
ðγþðs; s0Þ=γ−ðs; s0ÞÞPstðsÞPstðs0Þ, where PstðsÞ is the
stationary opinion distribution. Substituting Eq. (4) leads
to
R
1
−1Kðs; s0ÞPstðs0Þds0 ¼ ln½DðsÞPstðsÞ�, where the kernel

Kðs; s0Þ ≡ R ðγþðs; s0ÞFðs; s0Þ=γ−ðs; s0ÞDðsÞÞds. When
s → �1, we find ½R 1

−1 κ�ðs0ÞPstðs0Þds0� lnð1 ∓ sÞ∼
ln½ð1 ∓ sÞPstðsÞ�, where κ�ðs0Þ≡ ðγþð�1; s0ÞFð�1; s0Þ=
γ−ð�1; s0Þσ20Þ. Therefore, our theory predicts the universal
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scaling law PstðsÞ ∼ ð1 ∓ sÞδ�, where the exponents
δ� ¼ R

1
−1 κ�ðs0ÞPstðs0Þds0 − 1, in line with the scaling law

(1) discovered in real-world networks (see SM [26],
Analytical Solutions). This finding suggests that the uni-
versal scaling law is rather generic for coevolving networks
and largely independent of microscopic details.
Opinion topology correlation.—Equation (6) indicates

the underlying correlations between the network structures
and opinions (see SM [26], Analytical Solutions).
Incorporating Eqs. (4) and (5) with Eq. (6) leads to the
normalized joint opinion distribution Rðs; s0Þ ¼ ðQðs; s0ÞÞ=
ðPðsÞPðs0ÞÞ ¼ ðγþðs; s0ÞÞ=ðγ−ðs; s0ÞÞ. Since the joint opin-
ion distribution Qðs; s0Þ counts for the number of edges
connected by two agents with opinions s and s0. Therefore,
the expected degree of an agent with opinion s, k̄ðsÞ ¼R
1
−1Qðs0jsÞds0 ¼ R

1
−1ðQðs; s0ÞÞ=ðPðsÞÞds0 ¼ R

1
−1 ds

0Pstðs0Þ
ðγþðs0; sÞÞ=ðγ−ðs0; sÞÞ, allowing us to predict the correla-
tion between network measure k̄ and opinion s.
Minimal model.—To compare our theory with the

empirical data, below we will focus on a minimal realiza-
tion of the proposed framework. To be specific, we use a
linear opinion dynamics model [22,23], Fðs; s0Þ ¼
λðs0 − sÞ, where λ is a constant controlling the opinion
change rate. We also assume the edge birth and death rates
satisfy γ�ðs; s0Þ ¼ r�ð1þ J�ss0Þ, where jJ�j ≤ 1 quantify
the strength of homophily clustering, that is, similar
individuals to establish their relationships. We find the
explicit form of the kernel Kðs; s0Þ ¼ g

R ðð1þ Jþss0Þ=
ð1þ J−ss0ÞÞðð2ðs0 − sÞÞ=ð1 − s2ÞÞds for the minimal
model, where parameter g≡ ðλ=σ20Þðrþ=r−Þ. Here, λ=σ20
represents the opinion homogenization rate and rþ=r− is
the birth-death ratio for network connections. The para-
meter g integrates the interaction strengths of both opinion
and network dynamics. Together with Eqs. (4) and (6), we
solve PðsÞ for the minimal model (hsi ≠ 0), finding our
predictions agree with the empirical data [Figs. 2(a)–2(c),
see SM [26], Minimal Model]. Note that the minimal
model can also generate asymmetric PðsÞ distribution as
shown in Figs. 2(a)–2(c). However, the average opinion hsi
measured on the empirical data is very close to zero,
implying the corresponding PðsÞ is well approximated
by a symmetric distribution. For simplicity, we will focus
only on the symmetric case (hsi ¼ 0) for the discussion
below.
To explore different phases, we perform the numerical

simulations for various g with fixed Jþ and J−. Figure 1(b)
demonstrates a simulated minimal model of 2000 nodes,
showing a qualitative similarity with the empirical network
shown in Fig. 1(a). Figure 3(a) shows that a bipolarized
U-shaped opinion distribution PðsÞ emerges at a smaller g
(g ≈ 0.9). By gradually increasing the opinion change rate,
we find that PðsÞ transits from the U shape to M shape,
indicating partial polarization. For sufficiently large g
values (g ≈ 2.4), PðsÞ turns into a depolarized inverse a
U-shaped distribution. To quantify different phases, we

define an order parameter smax ¼ j arg maxsPðsÞj as the
most probable opinion. We find smax ¼ 0 for the depolar-
ized phase [Fig. 3(c)], and smax ¼ 1 for the polarized phase
[Fig. 3(a)]. For the partially polarized phase, smax are
ranging between 0 and 1 [Fig. 3(b)]. Figure 3(d) plots
smax as a function of g, indicating two phase transitions
exist. The first phase transition occurs at g� ≈ 1.3, when
smax departs from 1, indicating that the system transits
from polarization to partial polarization. The second phase
transition occurs at g�� ≈ 1.78 when smax vanishes, indicat-
ing the transition between partial polarization and
depolarization. Overall, decreasing g moves the system
toward polarization. Indeed, a smaller opinion homogeni-
zation rate drives opinions far from homogenization,
heading to polarization. On the other hand, a larger
birth-death ratio leads to a lower chance for dissimilar
agents to be connected; hence, similar agents tend to
cluster with their opinions homogenized, leading to
polarization.
To explore the opinion topology correlation, we plot

predicted normalized joint opinion distribution Rðs; s0Þ ¼
ðγþðs; s0ÞÞ=ðγ−ðs; s0ÞÞ ¼ ðrþð1þ Jþss0ÞÞ=ðr−ð1þ J−ss0ÞÞ
in Fig. 2(f), showing two opposite clustered domains
around the bottom-left and up-right corners, in line with
the empirical observation [Fig. 2(e)]. Figure 2(d) depicts
the analytical prediction of k̄ðsÞ, agreeing with the
empirical measurement. Note that the empirical data
show a small peak for neutral individuals, implying
that these users have expected a large degree compared
to our theory. This discrepancy might be due to a small
group of independent media that are politically neutral
but attract a large amount of connectivity from both sides.
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FIG. 3. Phase transitions. (a)–(c) The phase transition of
opinion distributions with fixed Jþ ¼ 0.7 and J− ¼ −0.8. These
values are determined by empirical measurements. (a) Polariza-
tion: g ¼ 0.9; (b) partial polarization: g ¼ 1.5; and (c) depolari-
zation: g ¼ 2.4. (d) smax against the parameter g. [g�: polarization
(yellow) to partial polarization (green); and g��: partial polari-
zation to depolarization (blue)].
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We will leave the investigation of this phenomenon for
future studies. This prediction suggests that our model
generates two highly polarized clusters [Fig. 1(b)], whose
hubs show significant extremeness, in line with real-
world polarized networks [Fig. 1(a)].
Phase diagram.—As our theory successfully captures

polarized and depolarized phases, one may wonder how the
modeling parameters control different phases. We focus
only on symmetric cases for simplicity, i.e., hsi ¼ 0. As we
discussed above, the exponent δ < 0 is for the polarized
phase, whereas δ > 0 is for both partial-polarized and
depolarized phases. Therefore, the transition between
polarization and partial polarization emerges when the
exponent δ ¼ 0, leading to g�−1 þ ðJþ − J−ÞfðJ−Þ ¼ 1,
where fðJ−Þ ¼ ð1þ J−Þ

R
1
−1 ds

0ðs02=ð1 − J2−s02ÞÞPstðs0Þ.
For the transition between the partially polarized and

depolarized phases, the first derivative at the s ¼ 0 van-
ishes, i.e., P0ð0Þ ¼ 0 because of the symmetry. However,
for the M-shaped PðsÞ the second derivative P00

stð0Þ > 0,
whereas P00

stð0Þ < 0 for inverse U-shaped PðsÞ. Therefore,
the transition occurs when the second derivative vanishes,
i.e., P00

stð0Þ ¼ 0. Substituting P0
stð0Þ ¼ 0 and P00

stð0Þ ¼ 0

into Eq. (4), we obtain g��−1 þ ðJþ − J−Þhs2i ¼ 1, where
hs2i is the variance of the opinion distribution. Figure 4
plots the phase diagram predicted by our model. The solid
curves separate the domains corresponding to different
phases. We mark the empirical data sets in the diagram
based on the modeling parameters fitting from the data. The
plot shows that blogosphere and FBHC are located at the
polarization phase, whereas FBSC is located at the depo-
larization phase.

In conclusion, we discover a universal scaling law for
opinion distributions empirically, characterized by a set of
scaling exponents, allowing us to quantify different polar-
izing phases of the real social system. We propose a generic
framework for polarization dynamics of coevolving net-
works where opinion dynamics and network evolution are
coupled based on two ingredients. Compared to the
existing RM model, our model predicts stable bipolarized
phases and a depolarization phase. In particular, our theory
finds the bipolarized opinion distributions and network
structures analytically, in line with empirical observations.
Moreover, our framework offers the exact solution to
coevolving network dynamics, which not only counts for
the observed scaling law but also predicts the correspond-
ing phase diagram with three different phases.
On the other hand, our analytic solution has been found

under the adiabatic approximation. We will leave the seek
of a general solution for future investigations. Our theory
provides a generic framework that can be applied to other
areas. For instance, by introducing si ¼ cosðθiÞ the frame-
work is capable of modeling nonlinearly coupled oscil-
lators involving background changes [32–34]. Most
importantly, our results potentially impact the understand-
ing of human society across disciplines including social
and political science.
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