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We propose a diagrammatic Monte Carlo approach for quantum impurity models, which can be regarded
as a generalization of the strong-coupling expansion for fermionic impurity models. The algorithm is based
on a self-consistently computed three-point vertex and a stochastically sampled four-point vertex, and it
allows one to obtain numerically exact results in a wide parameter regime. The performance of the
algorithm is demonstrated with applications to a spin-boson model representing an emitter in a waveguide.
As a function of the coupling strength, the spin exhibits a delocalization-localization crossover at low
temperatures, signaling a qualitative change in the real-time relaxation. In certain parameter regimes, the
response functions of the emitter coupled to the electromagnetic continuum can be described by an
effective Rabi model with appropriately defined parameters. We also discuss the spatial distribution of the
photon density around the emitter.
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Introduction.—The optical control of matter has emerged
as a promising pathway for tuning material properties. The
established paradigm involves disturbing materials with
strong lasers [1], leading to exotic nonthermal phases [2–4].
Recently, the enhancement of the coupling between matter
and vacuum fluctuations of the electromagnetic field in
cavities has been identified as an alternative route for
simultaneously engineering matter and light. When photon
modes are confined in a near-field cavity or a waveguide,
the hybridization between the material and photons can
become significantly enhanced, giving rise to novel light-
matter phases which exhibit unusual electronic and optical
properties [5,6]. Possible applications include controlling
the chemical reaction rates through strong collective light-
matter coupling [7], while in the solid-state context,
experiments have revealed that strong quantum light-
matter coupling can enhance ferromagnetism [8], change
the robustness of topological phases [9], and possibly
affect the critical temperature of unconventional super-
conductors [10].
A systematic theoretical analysis of these scenarios is

challenging. In particular, matter can generically interact
with a photon-mode continuum [11,12], such as dispersive
waveguide modes [13] which are selectively enhanced by
the optical confinement. Ultrastrong coupling between
single emitters and an electromagnetic continuum has been
experimentally realized in circuit quantum electrodynamics
using superconducting qubits [14], and similar physics can
be studied by coupling a dipole to quantized surface
acoustic waves [15]. Moreover, effective strong coupling
may be realized by exploiting excitations which are
collectively coupled to both the dipole and photons

[16,17]. Previous studies have attacked the problem with
polaron transformations [18,19] and matrix-product state
simulations [20] for a one-dimensional transmission line
cavity. For general cavity setups, perturbative expansions
around the high cavity frequency and the infinitely strong
coupling limit have been used to go beyond weak-coupling
theory [21–23]. However, a theoretical or numerical tool
capable of obtaining an unbiased description of matter
which is strongly coupled to a photon continuum is still
lacking.
In this Letter, we introduce a new diagrammatic

approach based on the self-consistent computation of a
triangular vertex and the numerical evaluation of a four-
point vertex. The algorithm distinguishes itself in several
ways from current state-of-the-art algorithms such as weak-
coupling diagrammatic expansions [24,25] and the
inchworm algorithm [26]. It is based on a strong-coupling
expansion, which makes it complementary to the weak-
coupling approaches, while the vertex self-consistency
goes beyond the inchworm algorithm. This vertex self-
consistency significantly improves the convergence toward
numerically exact results in the presented examples, and the
vertex gives direct access to correlation functions.
Combined with the fact that the vertex solver samples
connected diagrams in a (two-dimensional) time-stepping
procedure, this makes it promising for future nonequili-
brium simulations, which typically suffer from a dynamical
sign problem. To demonstrate the usefulness of the
approach, we apply it to a strongly coupled spin-boson
model, representing an emitter in a waveguide. We compute
the delocalization-to-localization crossover due to the
coupling to a mode continuum, in a regime which is
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challenging to explore with exact diagonalization due to the
continuum of modes or with matrix product states due to
the effect of nonzero temperature.
Model and method.—We consider an infinitely extended

rectangular waveguide whose height and width are set to a.
A two-level atom is located at position ða=2; a=2; 0Þ and
interacts with the confined photon modes through a dipolar
coupling [Fig. 1(a)]. In this geometry, the photon wave
numbers along the y and z direction ½ky ≡ lðπ=aÞ; kz ≡
mðπ=aÞ� are multiples of π=a and will be denoted by
ðkl; kmÞ, while the kx component can take continuous
values up to some cut-off frequency ωc (¼ 30 eV in the
calculations). The waveguide geometry generates a gap
Ω11 ¼

ffiffiffi

2
p

cπ=a in the photon spectrum, with c the speed of
light. We use the notation Ω2

lm ¼ ðk2l þ k2mÞc2, so that Ω11

denotes the photon energy for the lowest transverse wave
number (l ¼ m ¼ 1) and vanishing kx component. In the
main text, we only consider the continuum near Ω11.
In the dipolar gauge [27], the Hamiltonian of the atom

in the waveguide can be expressed as a spin-boson
model, Ĥ ¼ ðΔ=2Þσ̂3 þ ð1= ffiffiffiffi

L
p ÞPkγ ðgkγσ̂1akγ þ H:c:Þþ

P

kγ ωka
†
kγakγ , where σ̂i (i ¼ 1, 2, 3) denotes the spin-

1=2 Pauli operator in the basis of the two matter states, and
a†kγ (akγ) is the photon creation (annihilation) operator with
combined momentum index k ¼ ðkx; ky; kzÞ and (trans-
verse) polarization mode index γ ¼ 1, 2. L is the length of
the waveguide along the x direction. The corresponding

bare photon energy is ωk ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y þ k2z
q

. Δ para-

metrizes the level splitting of the atomic states, and we
fix Δ ¼ 1.0 eV. The light-matter coupling is given by
P

γ jgkγj2 ¼ ðp2Ω2
11=πϵa

2ωkÞ, where p is the dipole
matrix element for transitions between the two atomic
states, and ϵ the vacuum permittivity. By integrating
out the photon degrees of freedom [28], one obtains an
imaginary-time action for inverse temperature β, S ¼ S0−
1
2

R β
0 dτ

R β
0 dτ0 σ̂1ðτÞVðτ − τ0Þσ̂1ðτ0Þ, where S0 denotes the

local spin action, and VðτÞ ¼ P

kγ jgkγj2D0
kðτÞ is a retarded

spin-spin interaction, with the bare k given by
D0

kðτÞ ¼ e−ωkτθð−τÞnBðωkÞ þ e−ωkτθðτÞ½1þ nBðωkÞ�; nB
denotes the Bose distribution function and θðτÞ the
Heaviside function.
The solution of the model is formulated in terms of the

resolvent operator (or pseudoparticle propagator) ĜðτÞ ¼
trphfT τ exp½−

R

τ
0 dτ

0Ĥðτ0Þ�g in imaginary time (0 ≤ τ ≤ β),
which is a 2 × 2matrix in matter space after the partial trace
over the photon degrees of freedom. Starting from the
noninteracting propagator Ĝ0ðτÞ ¼ e−ðΔ=2Þσ̂3τ, a systematic
diagrammatic perturbation in the retarded spin-spin inter-
action VðτÞ can be written down in terms of a self-energy
correction Σ̂ðτÞ and the time-ordered Dyson equation
ĜðτÞ ¼ Ĝ0ðτÞ þ

R τ
0 dτ2

R τ2
0 dτ1Ĝ0ðτ − τ2ÞΣ̂ðτ2 − τ1ÞĜðτ1Þ

[Fig. 1(b)]. The exact self-energy is given by the sum of the
leading term Σ̂NCAðτÞ ¼ VðτÞσ̂1ĜðτÞσ̂1, called the non-
crossing approximation (NCA) [29], and the vertex cor-
rection Σ̂vðτÞ ¼

R τ
0 dτ1

R τ
τ1
dτ2Ĝðτ − τ2ÞVðτ − τ1ÞT̂ðτ2; τ1Þ

[Fig. 1(c)]. Here the three-point vertex T̂ðτ2; τ1Þ sums up
all diagrams with interaction lines dressing the operator σ̂1;
it can be represented in terms of a self-consistent set of
exact diagrammatic equations, as illustrated in Fig. 1(d). In
the figure, the (orange) square is the four-point vertex
Qðτ; τ2; τ1Þ, which is one-particle irreducible in the inter-
action line and two-particle irreducible in the local time-
evolution operator. The triangular vertex equation must be
solved self-consistently with the Dyson equation for Σ̂. To
compute the Q vertex, we developed a diagrammatic
Monte Carlo (DiagMC) scheme [30–32], which stochas-
tically samples all possible Feynman diagrams of the Q
vertex (for details, see Ref. [33]). Upon convergence with
diagram order, the addition of the Q vertex in the self-
consistency equation for T̂ guarantees a numerically exact
solution. Finally, relevant observables are evaluated in
terms of Ĝ and T̂; in particular, the exact spin-correlation
function χsp ¼ hσ̂1ðτÞσ̂1ð0Þi is given by

χspðτÞ ¼
1

Z
tr½Ĝðβ − τÞσ̂1ĜðτÞσ̂1� þ

1

Z

Z

τ

0

dτ1

Z

β

τ
dτ2

× tr½Ĝðβ − τ2ÞT̂ðτ2 − τ1; τ − τ1ÞĜðτ1Þσ̂1�; ð1Þ

(e)

(b)

(d)

(a)

(c)

FIG. 1. (a) Schematic picture of the rectangular waveguide
with width a in both the y and z direction. The electric dipole
with moment p ¼ pσ̂1ex along the x direction is located at
ð0; a=2; a=2Þ. (b)–(e) Diagrammatic hierarchy between the
triangular and four-point vertex, the self-energy, the Green’s
function, and the spin correlation function related via (b) the
Dyson equation, (c) the Schwinger-Dyson equation, (d) the
vertex self-consistency equation, and (e) the equation for
the spin-correlation function. The dashed lines present the
effective spin interaction Vðτ − τ0Þ, and solid (dashed) arrows
show the (bare) local propagator Ĝ (Ĝ0). The solid dot denotes the
Pauli matrix σ̂1, and the open dots emphasize the encapsulated σ̂1
in the triangular and four-point vertex.
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with Z ¼ tr½ĜðβÞ� [Fig. 1(e)]. While we focus here on the
spin-boson model, the vertex formalism introduced here
can be extended to general impurity models with fermionic
or bosonic bath degrees of freedom [33].
Below we will denote by Qn the fully self-consistent

approximation which includes the four-point vertex up to
order n; Q0 is also referred to as the triangular vertex
approximation (TVA). We will also compare this to simpler
schemes which do not involve the four-point vertex [28], in
particular the NCA approximation Σ̂ ≈ Σ̂NCA; the one-
crossing approximation (OCA) [34], which approximates
T̂ by the first diagram in Fig. 1(d); the two-crossing
approximation (TCA) which keep self-energy diagrams
with one and two crossings of the interaction lines; and the
third-order approximation, which keeps all self-energy
diagrams up to the third order.
As a first test of the solver, we consider the model with

only a single photon mode, for which the spin-correlation
function χsp ¼ hσ̂1ðτÞσ̂1ð0Þi can be calculated by exact
diagonalization. In Fig. 2(a), one can see that the exact
result (dashed line) is recovered for a sufficiently high
(≳10) diagram order in Q. Figure 2(c) shows that the
applied vertex self-consistency (red crosses) considerably
improves the results compared to schemes without it, like

NCA, OCA, and TCA. This promising feature of the vertex
impurity solver distinguishes it from other state-of-the-art
algorithms such as the inchworm algorithm [26], which are
based on a self-energy sampling without vertex self-
consistency.
Results.—We now turn to the waveguide problem with

continuous bath degrees of freedom, which cannot be
solved with exact diagonalization. The chosen parameter
set (T ¼ 0.1 eV, p ¼ 3 eμm, and Ω11 ¼ 1.0 eV) repre-
sents the most challenging regime, where all energy scales
are comparable. (For specific applications such as super-
conducting qubits [14], one would simply have to rescale
the energy unit.) Convergence to the exact result can be
achieved by sampling theQ vertex up to order 14. The blue
crosses in Fig. 2(c) illustrate the systematic convergence of
χsp as a function of diagram order of theQ vertex. As in the
single-mode case, the vertex self-consistency improves the
accuracy, and the corrections from the Q vertex are
essential for reliable results in this strong-coupling regime.
At low but nonzero temperatures, the atom in the

waveguide exhibits a crossover from a fluctuating state
to a polarized state with increasing coupling strength,
which we parametrize with the dimensionless constant
α2 ¼ p2Ω2

11=2ϵπ
3c3. α2 controls the induced inter-

action strength from the lowest-energy photon mode,
1

cΩ11

P

γg
2
kx¼0;γ , which is empirically found to be useful

even in the continuum case. For a given energy unit Δ, it is
sufficient to explore the α dependence of the system for
various Ω11. Figures 2(d) and 2(e) show the converged
χspðβ=2Þ, a measure for the localization of the dipole, as a
function of α. Figure 2(e) plots χðβ=2ÞðαÞ for different
temperatures and a fixed photonic gap. As we enhance the
quantum coherence by decreasing the temperature,
χspðβ=2Þ is considerably suppressed in the weak-coupling
regime (α≲ 0.4). In the strong-coupling regime χsp shows a
slow decay at long times, indicating a localized spin in the x
direction. The crossover defined by the inflection point of
χspðβ=2Þ gradually shifts to stronger couplings α, and the
crossover becomes sharper as we decrease the temperature.
In contrast to previous studies of the spin-boson model
with a gapless Ohmic bath [35], VðτÞ decays faster than
τ−2, and we do not expect a localization transition at zero
temperature [36].
For a fixed nonzero temperature, the χspðβ=2Þ data for

various photonic gap sizes collapse onto a single curve in
the weak coupling regime [Fig. 2(d)], when plotted as a
function of the dimensionless parameter α. In the crossover
regime, the χsp curves for different gap sizes start to
disperse; the larger the gap size, the lower the crossover
point in terms of α. The data, however, indicate a nontrivial
crossover to a localized state in the limit Ω11 → ∞, where
the photonic gap is much larger than the level splitting. This
is because of the increasing light-matter coupling strength
with increasing photonic gap (decreasing width of the
waveguide).

FIG. 2. Spin-correlation function χspðτÞ for the approximate
schemes (NCA, OCA, TCA, TVA) and the Monte Carlo simu-
lation including the Q-vertex diagrams to order n (labeled Qn).
(a) Single-mode benchmark with T ¼ 0.1 eV, g ¼ 1.4 eV, and
ω ¼ 1.5 eV; (b) Waveguide with T ¼ 0.1 eV, p ¼ 3 eμm, and
Ω11 ¼ 1.0 eV. The red dashed line in (a) presents the exact
diagonalization result for the benchmark. (c) Systematic con-
vergence of χspðβ=2Þ with diagram order. (d) and (e) Converged
spin correlation functions for the waveguide model at τ ¼ β=2 as
a function of the coupling strength α, and for various temper-
atures at fixed photon gap Ω11 ¼ 1.0 eV (e), for various photonic
gap sizes at a fixed temperature T ¼ 0.1 eV (d). Dashed lines in
(d) show the results for the effective single-mode cavity model.
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Figure 3(a) presents the spin relaxation function
ImχspðωÞ=ω. Real frequency data have to be obtained by
an analytical continuation of χspðτÞ. We compare two
complementary analytic continuation methods, the maxi-
mum entropy (MaxEnt) method [37,38] and the Padé
approximation [39], in order to approximately estimate
the uncertainty in the peak positions [28]. Without the
waveguide, the result would be a delta function at ω ¼
1 eV (broadened by MaxEnt). The spin-photon coupling
splits the spin excitation into two separate polariton modes.
The lower polariton mode shifts to ω → 0 as we increase α,
while the upper polariton mode moves to higher energy. As
expected, the upper polariton mode is suppressed at higher
energies, but its peak height strongly depends on the
photonic gap [28]. The width of the high-energy satellite
increases with increasing α, and for α≳ 0.6 it becomes
difficult to pinpoint the peak location within the numerical
accuracy of analytic continuation. In the same strong
coupling regime, the two low-energy peaks at positive
and negative energy start to merge, resulting in a single
peak at ω ¼ 0. This signals a qualitative change in the
relaxation dynamics of the spin in real time, hσ̂1ðtÞi, for a
polarized initial condition hσ̂1ð0Þi ¼ 1. In the case of a two-
peak spectrum, the spin shows an underdamped oscillation,
while it exhibits an overdamped relaxation in the single-
peak case.
The splitting of the excitation spectrum into upper and

lower polaritons looks similar to a conventional Rabi

model, where a two-level emitter is coupled to a single
cavity mode, even though the situation in the present case is
very different, and for the parameters of Fig. 3, the bare
excitation energy Δ is located right at the edge of a
continuum. Upon increasing the light-matter coupling,
the lower polariton is pushed into the photonic gap (but
still remains damped), while the upper polariton overlaps
with the photon continuum. Nevertheless, the retarded
interaction VðτÞ suggests a way to construct an effective
Rabi model with photon energy ωeff and light-matter
coupling geff , which can provide insights into the polari-
ton splitting. We determine the two effective parameters
by identifying the retarded interaction VðτÞ of the
waveguide model with VeffðτÞ ¼ g2eff cosh ½ðτ − β=2Þωeff �=
sinh ðβωeff=2Þ of the effective model at τ ¼ 0 and β=2. The
detailed dependence of ωeff and geff on α and Ω11 is
analyzed in the Supplemental Material [28]. In particular, in
the low temperature limit βΩ ≫ 1, we have ωeff ≈ Ω11, and
g2eff ≈ 2α2Ω2

11 logð2ωc=Ω11Þ, so that up to a logarithmic
dependence in the high-energy cutoff α ∼ geff=ωeff is
related to the conventional dimensionless coupling in the
Rabi model.
In Fig. 3(c), we show the excited states of the Rabi model

with nph ≤ 1 photons, and their contribution to χspðωÞ as a
function of Ω11 at fixed p. One can see that the lower
polariton mode becomes the dominant spin excitation in the
narrow waveguide with Ω11 > Δ. It is renormalized toward
zero for large Ω11, because of the increase of geff with Ω11.
Finally, the brown dashed lines in Fig. 3(b) show the two
leading excitation energies in the resulting Rabi model,
which fit the exact behavior remarkably well. This shows
that the effective Rabi model provides a meaningful
estimate of the coupling to a continuum, at least in the
regime where the bare mode is not overlapping with
the continuum. For a smaller value of Ω11, see the
Supplemental Material [28].
The spin-photon coupling also renormalizes the photon

propagator via the equation of motion, Dkγ;k0γ0 ðiqnÞ ¼
δγγ0δkk0D0

kðiqnÞ − ðgkγgk0γ0=LÞD0
kðiqnÞχspðiqnÞD0

k0 ðiqnÞ, re-
sulting in a photon bound state centered at the dipole.
Figure 4 shows the spatial distribution of the photon density

FIG. 3. (a) Spin relaxation function ImχspðωÞ=ω for various
coupling strengths α, analytically continued by MaxEnt. (b) Peak
locations of the lower and upper polariton modes obtained by
Padé (solid symbols) and MaxEnt (open symbols), with the full
width at half maximum indicated by the blue shading. Brown
dashed lines show the relevant excitation energies in the
effective Rabi model; for the given parameters, the couplings
are geff ¼ 2.86Ω11α and ωeff ¼ 1.4Ω11. (c) Spectrum of the
effective Rabi model, for p ¼ 1.5 eμm as a function of Ω11. For
Ω11 ¼ 1 eV, the corresponding α ¼ 0.292, see vertical line in
panel (b). The symbol size is proportional to the contribution of
the excitation to χspðωÞ.
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ρphðxÞ in the vicinity of the spin for various coupling
strengths α, and the total bound photon density Δhnphi ¼
R

dx½ρphðxÞ − ρ0�, where ρ0 is the noninteracting photon
density due to thermal excitations. One can see that the
photon distribution decays exponentially to the thermal
background, and Δhnphi becomes of order 1 in the deep
strong coupling limit (α≳ 0.49).
Conclusions.—We have introduced a vertex-based dia-

grammatic algorithm which allows one to study strong
light-matter coupling problems in the presence of a
continuum of photon modes, and demonstrated its effec-
tiveness with applications to the spin-boson model with
coupling strength comparable to the cavity frequency and
level splitting. The boldified [40–48] DiagMC method
[30–32] has been reformulated to directly sample the four-
point vertex with nonlocal-in-time interactions in pseudo-
particle space [49,50]. The self-consistency at the level of
the triangular vertex improves the approximation at a given
diagram order, and speeds up the convergence to the exact
results. While a self-consistent series in general can suffer
from the multivaluedness problem [33,51–61], this does
not seem to be the case for the present situation [28].
With modified local propagators, the method can also be

applied to the Anderson impurity model and related
impurity problems with relevance for dynamical mean
field theory. In this context, our method provides a
systematic path for high-order, self-consistent strong-
coupling expansions. While in equilibrium, alternative
powerful Monte Carlo methods exist [62,63], the new
approach introduced here is promising also for nonequili-
brium applications, which will be the subject of forth-
coming studies.
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