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A remarkable breakthrough in topological phase classification is the establishment of the topological
periodic table, which is mainly based on the classifying space analysis or K theory, but not based on
concrete Hamiltonians that possess finite bands or arise in a lattice. As a result, it is still difficult to identify
the topological phase of an arbitrary Hamiltonian; the common practice is, instead, to check the incomplete

and still growing list of topological invariants one by one, very often by trial and error. Here, we develop

unsupervised classifications of topological gapped systems with symmetries, and demonstrate the data-

driven construction of the topological periodic table without a priori knowledge of topological invariants.

This unsupervised data-driven strategy can take into account spatial symmetries, and further classify phases

that were previously classified as trivial in the past. Our Letter introduces machine learning into topological

phase classification and paves the way for intelligent explorations of new phases of topological matter.
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Topological systems exhibit topological properties and
phenomena [1-4]. The interplay between symmetry and
topology plays an important role in symmetry-protected
topological phases [5—8]. As a remarkable breakthrough,
the establishment of the topological periodic table has
revealed the fundamental principles and hidden periodic
patterns in symmetry-protected topological phases [5-7,9].
Just like the periodic table of elements in chemistry, the
topological periodic table serves as a roadmap in the
exploration of new topological materials and topological
phases under symmetries.

The topological periodic table is established mainly
based on the homotopy group properties of classifying
spaces for general Hamiltonians or K theory [6,7,9].
However, its application suffers from some limitations as
follows: (1) It is difficult to judge whether an arbitrary
Hamiltonian under a given symmetry is topological or not,
because the topological periodic table is not derived from
analyzing specific Hamiltonians that possess finite bands or
arise in a lattice. (2) Some phases that were considered
trivial in the past have been found to carry topological
properties, e.g., the valley Hall phase [10] and higher-order
topological phase [11]. (3) Defining topological invariants
in high dimensions (i.e., d > 4, d is the dimension) is still
difficult. Besides the above limitations, to identify the
topological phase of a concrete Hamiltonian, one needs to
check the list of existing topological invariants one-by-one,
very often by trial and error. However, the list of topo-
logical invariants is incomplete and still growing. Hence, it
is desirable to identify topological phases without relying
on the limited knowledge of topological invariants.
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Recently, machine learning has been introduced into
physical research as a powerful tool for data ana-
lysis [12-17], e.g., the deep-learning-enhanced image
construction [18-20], the functional optical device enginee-
ring [21-27], and the inverse design of topological photonic
insulators [28—-30]. Many applications of machine learning
in physics usually require extensive data with well-defined
labels; they belong to so-called supervised learning, and
may fail to find new labels beyond a priori knowledge.
Unsupervised learning, which aims to capture hidden
features from raw data without a priori human knowledge,
has attracted a lot of attention in phase identification in
many-body systems [31-33], band topology detection
[34-38], and the learning of non-Hermitian systems [39].
Thus, unsupervised learning can be a powerful approach
toward topological phase classification under given sym-
metries without suffering from the above limitations of
the topological periodic table.

In this Letter, we demonstrate the unsupervised classi-
fication of topological gapped systems with symmetries
and the data-driven construction of the topological periodic
table, without the mathematical knowledge of group theory
or a priori topological invariants. Based on the intuitive
picture of topology, we propose a similarity function to
measure the topological difference between two samples of
Hamiltonians. With this similarity function, we perform
our proposed clustering algorithm to find the number of
topologically different phases automatically. By exploiting
randomly generated Hamiltonian samples under different
symmetry conditions, the topological periodic table is
generated unsupervisedly, with extra information revealed
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FIG. 1. Band topology for gapped Hamiltonians under sym-
metries. During continuous deformations from @ =0 to o = 1,
the H, = (1 — a)H, + aH, will (a) not close the gap if H, and
H, are topologically equivalent, or (b) close the gap when they
are topologically distinct. The existence of the band closing point
a, is responsible for determining the topological classification,
but a. is not fixed, due to the arbitrary eigenvalues E of H; and
H,. With the flattened Hamiltonians Q; and Q,, the Q, =
(1 —a)Q; + aQ, will (c) not close, or (d) close the gap, being
consistent with the topological properties of H; and H,. How-
ever, here a, for Q, is a constant: a. = 1/2.

about the relation between the number of topological
phases and the number of bands. Finally, we also demon-
strate the topological classification of phases based on
spatially rotational symmetries C5 and Cjy.

Intuitively, two gapped quantum Hermitian systems H
and H, under the same symmetry are topologically
equivalent if their Hamiltonians can be continuously
deformed into each other without ever closing the energy
gap. The continuous deformation can be defined as
H,=(l-a)H,+aH,, a€|0,1]. To demonstrate the
concept of topological classification, we consider that
H,; and H, are two two-band Hamiltonians here. We
illustrate the two possible cases for H, in Figs. 1(a) and
1(b), showing that H, and H, are (a) topologically equiv-
alent if there is no energy crossing point, and (b) topologi-
cally distinct if there is an energy crossing point a, whose
existence is robust against perturbations. Note that some-
times in case (a), there might be an “accidental” crossing
point, but it can be easily removed by perturbations [40].
It should be stressed that the topological phases discussed
in this Letter are protected by symmetries. There can be
topological phase transitions without gap closing, if the
symmetry conditions are changed [51,52], but such
changes violate the concept of continuous deformation
due to the discrete nature of symmetries.

According to the above analysis, the existence of a, can
be core evidence for classifying the topological gapped
systems. However, as shown in Fig. 1(b), the value of a,. is
not fixed due to the arbitrary eigenvalues of Hamiltonians.
Here, we show an equivalent representation of H, with

constant a,.. For a Hamiltonian H, one can obtain
the eigenequation H|y,,z) = Ep|Wux) and H'|@, i) =
E,|@nk), where m denotes the mth band and k is the
wave vector. The projection operator can be defined as
P(k) =3 coce [Wmi){®mk|, where occ means the occu-
pied bands, namely occ = {m|E,, < E;}. It has been
shown that P(k) can be used in topological classifica-
tions [34,53-55]. Here we consider the Fermi level as
E; = 0. As an equivalent representation, we can define a
flattened Hamiltonian as Q(k) = 1-2P(k) [5,56], which
has the eigenvalues as £1. This Q plays a role similar to H,
carrying the essential information of H [7]. As shown in
Figs. 1(c) and 1(d), the eigenvalue A of Q, = (1 —a)Q; +
aQ, has a crossing point with 4 = 0 (i.e., Fermi level) at the
constant point a. = 1/2 if H; and H, are topologi-
cally distinct. The reason for a, = 1/2 is the linear
dependence of the crossing eigenvalue branches on « in
a topological transition with continuous deformation [40].
For Hamiltonians in more than zero dimensions, the
scenarios in Fig. 1(d) can occur at the momenta that exhibit
the topological gap closing, whereas the continuous de-
formation of Q will still resemble the case in Fig. 1(c)
at all other momenta. For the Hamiltonians H; and
H;, Q;(k)+ Q;(k) =20, , where Q; is the flattened
Hamiltonian of H;. Based on the above analysis,
we propose a similarity function K;; between the
Hamiltonians H; and H; as

=T (-5 W

keBZ

where K;; € [0,1], £ is a constant, and BZ means the
Brillouin zone. Obviously, K;; = 0 when H; and H; are
topologically distinct since one of the eigenvalues is zero,
and KC;; # 0 when they are topologically equivalent. For
practical computation, we assume & — 0 so that kC;; can be
approximately treated as a binary step function [40]:
Kij=1 when H; and H; are topologically equivalent,
and K;; = 0 otherwise. The robustness of the crossing point
is sufficient to manifest topologically distinct phases. There
are two mechanisms in our algorithm to guarantee the
accuracy of topological phase identification: (1) the random
generation of Hamiltonian samples and (2) the introduction
of symmetry-preserved perturbations in the similarity
function [40].

After obtaining the similarities between Hamiltonians,
we perform our proposed clustering algorithm to figure out
how many topologically distinct phases the Hamiltonian
samples {H;} under given symmetries can have. In our
algorithm, there are aset Sand alist {M,.}: S = {H,, } isa
set of samples that are mutually different (i.e., C, ,, <k,
VH,.H,, € S, k. = 1/2 is the center value of the value

range of /C;;) and M. denotes the number of samples that
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are topologically equivalentto H,, , {M.|c = 1,2,....N_}.
Our proposed algorithm contains the two steps: (1) Add the
first sample H,; into S since the initial S ={J. Then,
S={H,}, py=1, M; =1, and N. = 1. (2) Compare
the following sample H; with the samples in S: if H; is
topologically equivalent to H,, ie, H, €S and
K;,. > k., then M, := M, + 1. Otherwise, if none of
the samples in S is topologically equivalent to H;, we
add Hjinto S, My .y =1, py 41 = j,and N, :==N.+ 1.
After calculating all samples in {H;}, we can obtain the
following: N, denotes the number of topologically distinct
phases, and {M .} denotes the number of samples that have
the same phase as H,, [40]. We use ¢ to denote the label of
topologically distinct phases. Our proposed clustering
algorithm is similar to the hierarchical clustering based
on neighbor relations [57,58]. Given any new H y, we can
quickly identify its phase by comparing it with the samples
in S: it is topologically equivalent to H, if K, ; < k. and
H, € &, and otherwise it represents a new phase.
Firstly, we verify our approach in some well-known
topological insulating models. Figure 2(a) shows a 1D
Su-Schrieffer-Heeger (SSH) chain with long-range hopping
under chiral symmetry [40], a 2D Chern insulator of
Hanldane model [1,59], and a higher-order topological
insulator (HOTI) in a Kagome lattice [60,61]. After
generating 500 samples of each model with random
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FIG. 2. Demonstration of unsupervised learning of topological
classifications and topological phase diagrams. (a) The three
models, the 1D SSH model with long-range hopping, Haldane
model, and HOTI in Kagome lattice, have been demonstrated.
Here, we set ty = 1, 11,1, € [0,2] for the 1D SSH model with
long-range hopping, t; = 1, t, = 0.1, m € [-61,,61,], and ¢ €
[—n, x] for the Haldane model, #,, 7, € [0, 1] for HOTI in Kagome
lattice. (b) The number of samples M for the topologically
different phases. The values of ¢ denote the labels of topological
different phases. (c) The topological phase diagrams can be
obtained based on the similarity between the Hamiltonian with
the given parameters and Hamiltonians in S. The different colors
and labels denote the topologically different phases but not the
topological invariants.

parameters, we calculate their similarities and per-
form the clustering algorithm to obtain the number of
phases [40]. We can see from Fig. 2(b) that the number of
topologically distinct phases, denoted as N, is as follows:
N, =3 for the 1D model, N, =4 for the 2D Chern
insulator, and N, =2 for the HOTI. After labeling all
phases (i.e., with different values of c), we can calculate
their similarities with the samples and classify samples with
the label of the sample H, which has the maximum
similarity. Consequently, we can obtain the topological
phase diagrams unsupervisedly, as shown in Fig. 2(c) [40].
In particular, in the 2D Haldane model, our algorithm can
not only capture the parameter regions with a nonzero
Chern number, but also identify the regions that are
described by valley Chern numbers (or within the metho-
dology of topological quantum chemistry [62] and sym-
metry indicators [63]). All classification results are in
excellent agreement with the corresponding topological
invariants [40]. The unsupervised classification of fragile
topology [64,65], Hopf insulator [66], and delicate topo-
logy [67] can be found in the Supplemental Material [40].

In the following, we proceed to achieve the topological
classification of general gapped Hamiltonians in different
symmetry classes. Firstly, we demonstrate unsupervised
classification of zero-dimensional (0D) topological sys-
tems. We follow the same symmetry class definition as the
Altland—Zirnbauer (AZ) classes [9], which denote ten
symmetry classes of topological insulators and supercon-
ductors according to the time-reversal (7), particle-hole
(P), and chiral (C) symmetries. Here, we choose the
representations of symmetry operators in the basis of
Ref. [68] and exploit the random matrix technologies to
generate the OD n xn Hamiltonians under different
symmetries [40,69]. We generate 500 samples for each
symmetry class, calculate their similarities based on
Eq. (1), and then perform the cluster algorithm to obtain
N. and {M_}. The numbers of samples classified into
different phases for each symmetry class in the 0D system
are plotted in Fig. 3. We can see that there are N, = n + 1
phases for the classes A and Al and N, = n/2 + 1 phases
for the class AIl [40], which correspond to the topological
classification Z and 2Z, respectively. There are only
N, = 2 phases for the classes BDI and D, meaning that
they belong to Z,. The remaining classes have only N, = 1
phase, corresponding to the trivial group. These data-driven
classifications are in good agreement with the theoretical
predictions based on homotopy group of classifying
spaces or K theory for Hamiltonians with infinite bands
[5,6,9]. In particular, our method requires no a priori
knowledge of topological invariants and is universal for
different symmetry conditions.

For higher dimensions, we exploit the dimension in-
crement method in Refs. [40,70]. After generating 500
samples of 1D, 2D, and 3D Hamiltonians [40,70], respec-
tively, we perform our cluster algorithm with similarities of
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are the symmetry classes in terms of AZ classes. We generate Hamiltonians with dimensions ranging from 1D to 3D based on the 0D
n x n Hamiltonians [40]. Obviously, it is Z when the number of phases is equal to N, = n + 1, 2Z when the number of phases is equal
toN. = n/2 + 1, Z, for the constant number of phases 2 (N, = 2), and trivial for only 1 phase (N. = 1). Here, we set n = 8; d denotes

the dimension.

Eq. (1) and obtain the classification results of these
topological Hamiltonians in Fig. 3. One can see that the
translation symmetry from increasing dimensions can
affect the topological classifications. We perform clustering
for all symmetry classes of random d-dimensional
Hamiltonians from d = 0 to d = 9 [40], and the number
of phases for different dimensions has been concluded in
Table 1. The numbers of phases n+ 1, n/2 + 1, 2, and 1
correspond to Z, 27, Z,, and the trivial group, respectively.
From Fig. 3 and Table I, we can see that the numbers of
topologically distinct phases have obvious periodic patterns
when the dimension increases d — d + 1: (1) The numbers
of phases exchange between A and AIll: n 4+ 1<=1; (2) The
classification pattern “shifts” horizontally by one symmetry
class. Theoretically, this principle of periodicity is termed
as Bott periodicity [5,6]. Besides Bott periodicity, we also
show that the number of topologically distinct phases is
affected by the number of bands [40], e.g., N. = n + 1 for
the 1D ATl class, N. = n/2 + 1 for the 2D C class. These
relations have not been revealed in the previous theories
due to the assumption of infinite bands. It should be
mentioned that we consider nearest-neighbor hopping in
the unsupervised learning in Fig. 3 and Table I, because the

TABLE L.

topological invariants can be fully accessed by increasing
the number of bands, whose effect is similar (or equivalent)
to introducing long-range hopping. The discussion about
the effect of long-range hopping on topological classifica-
tion can be found in Supplemental Material [40].
Besides the global symmetries (i.e., P, 7, and C), spatial
symmetry can also play an important role in topological
phases [71-75]. For example, the 2D spinless insulator in
the Al class is trivial if only under time-reversal symmetry
T. However, after introducing spatial symmetry, the
insulator in the AI class can be topological, e.g., in
the higher-order topological insulator [11,60,61]. Since
the family of spatial symmetries is quite large, here
we focus on the topological classification of C; and
C4-symmetric 2D lattices with time-reversal symmetry
(i.e., wallpaper symmetry groups p3 and p4, respectively).
We assume that there are three sites in the unit cell of a
C;-symmetric 2D lattice and four sites in a C4-symmetric 2D
lattice, corresponding to the Wyckoff positions 3d and 4d,
respectively, as shown in Fig. 4. We further assume that there
is one electron in the unit cell of the C3-symmetric lattice and
two electrons in the C,-symmetric lattice (i.e., half filling).
We generate samples for each spatial symmetry, calculate

The number of topologically different phases N, for the d-dimensional Hamiltonians in different symmetry classes. Here,

we generate the higher-dimensional Hamiltonians based on the OD n x n random Hamiltonians [40].

d A AlIL Al BDI D DIII All ClI C CI
0 n+1 1 n+1 2 2 1 n/2+1 1 1 1
1 1 n+1 1 n+1 2 2 1 n/2+1 1 1
2 n+1 1 1 1 n+1 2 2 1 n/2+1 1
3 1 n+1 1 1 1 n+1 2 2 1 n/2+1
4 n+1 1 n/2+1 1 1 1 n+1 2 2 1
5 1 n+1 1 n/2+1 1 1 1 n+1 2 2
6 n+1 1 2 1 n/2+1 1 1 1 n+1 2
7 1 n+1 2 2 1 n/2+1 1 1 1 n+1
8 n+1 1 n—+1 2 2 1 n/2+1 1 1 1
9 1 n+1 1 n+1 2 1 n/2+1 1 1
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(b) Cy

FIG. 4. Topological classifications of 2D spinless lattice with
spatial symmetries C; and C4. (a) The Cs-symmetric lattice.
There are three sites in the unit cell, corresponding to the Wyckoff
positions 3d for the wallpaper group p3. There are N. =3
topologically different phases. Here, ¢ denotes the class of phases
and M denotes the number of samples in topologically different
phases. The values of M for each ¢ are 102, 812, and 86,
respectively. (b) The C,-symmetric lattice. There are four sites in
the unit cell, corresponding to the Wyckoff position 4d for the
wallpaper group p4. There are N. = 6 different phases. The
values of M for each c are 951, 81, 875, 86, 3, and 4, respectively.
Here, we generate 1000 samples for C; symmetry and 2000
samples for C, symmetry.

their similarities based on Eq. (1), and then perform
the cluster algorithm to obtain N. and {M_.} [40]. The
plots for the numbers of samples in different phases for
each spatial symmetry have been shown in Fig. 4. From the
results, we can see that there are N, = 3 topologically
distinct phases for C; symmetry, and N. =6 for C,
symmetry. In contrast to the traditional theoretical approach
[71,73,76-78], our data-driven identification of topological
phases does not require the definition of a time-reversal
topological invariant. More details can be found in the
Supplemental Material [40].

To summarize, we propose the unsupervised learning of
topological classification and the data-driven construction
of the topological periodic table. Our method is based on an
efficient similarity function to accurately measure topo-
logical differences between Hamiltonians and a cluster
algorithm for detecting the number of clusters automati-
cally. We demonstrate the validity of our algorithm for
classifying topological phases accurately and finding phase
diagrams without human knowledge a priori or concepts of
topological invariants. Our approach can be extended to
classify the Hamiltonians under the other symmetries [79],
i.e, projective symmetry [80-82], non-Hermitian sym-
metry [39,83], and non-Abelian symmetry [84-86]. Our
Letter not only paves the way toward unsupervised
data-driven topological classification, but also measures

a significant step in the early stage of machine learning
application in fundamental physics.
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