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Deep neural networks have been very successful as highly accurate wave function Ansätze for variational
Monte Carlo calculations of molecular ground states. We present an extension of one such Ansatz,
FermiNet, to calculations of the ground states of periodic Hamiltonians, and study the homogeneous
electron gas. FermiNet calculations of the ground-state energies of small electron gas systems are in
excellent agreement with previous initiator full configuration interaction quantum Monte Carlo and
diffusion Monte Carlo calculations. We investigate the spin-polarized homogeneous electron gas and
demonstrate that the same neural network architecture is capable of accurately representing both the
delocalized Fermi liquid state and the localized Wigner crystal state. The network converges on the
translationally invariant ground state at high density and spontaneously breaks the symmetry to produce
the crystalline ground state at low density, despite being given no a priori knowledge that a phase transition
exists.
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The correlated motion of electrons in condensed matter
gives rise to rich emergent phenomena. Although these are
governed by fundamental quantum mechanical principles
known for almost a century, they remain difficult to
understand and even harder to predict theoretically or
computationally. One of the major themes of modern
condensed matter physics is the study of phase transitions
caused by electron correlation.
The difficulty of solving the Schrödinger equation scales

exponentially with particle number in general, so exact
solutions for interacting many-electron systems are rarely
accessible. This explains why approximate numerical
techniques have become such vital tools in the search
for exotic zero-temperature phases, providing accurate
predictions of experimentally observable quantities in
phases already understood qualitatively. Most computa-
tional approaches, however, encode prior assumptions
about the appropriate phase, which poses a substantial
difficulty in predicting previously unknown electronic
states. Changes in symmetry or topology are rarely dis-
covered computationally before they have been seen
experimentally or proposed on theoretical grounds.

In this Letter, we introduce a neural-network-based
approach to predicting the qualitative nature of electronic
ground states in condensed matter. We utilize a represen-
tation of the wave function, the fermionic neural network
(FermiNet) [1], which is capable of representing any
antisymmetric state [2], and requires no a priori knowledge
of the system being studied. Guided by the quantum
mechanical variational principle alone, without reference
to experimental data, FermiNet can learn the ground state
of a many-body interacting Hamiltonian. We extend
FermiNet, which has previously only been applied to atoms
and molecules [1,3–5], to systems subject to periodic
boundary conditions. Phase transitions are seen by studying
changes in the ground state as the parameters of the system
are varied.
A significant body of recent work has used machine

learning to detect phase transitions in simulated classical
[6–8] and quantum [9–11] systems, but these studies
required a source of external data, looking for patterns
characteristic of different phases. Our approach requires
only the Hamiltonian. There has also been work using
neural network Ansätze to study lattice models and spin
systems, including their phase transitions [12–16], but for
applications to many real systems, the wave function must
be treated, as in the present Letter, in continuous space.
The flexibility of FermiNet hinges on the universal

approximation property of neural networks [17,18], which
makes them a versatile tool for approximating high-
dimensional functions and has led to radical advances in
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many computational fields [19–22]. This success has
motivated the application of neural networks to solving
problems across the physical sciences, including quantum
mechanics [12,23–25]. Several neural-network-based wave
functions in both first-quantized [1,3,26–28] and second-
quantized [29] representations have recently been used to
compute the ground-state energies of molecules to a level
of accuracy rivaling, or in some cases exceeding, sophis-
ticated quantum chemistry methods such as coupled
cluster [30]. FermiNet and Ansätze derived from it are
the most accurate of these so far, gaining an advantage over
second-quantized neural and most quantum chemical
approaches because they are basis-set-free. This, coupled
with the flexibility of the neural representation, enables the
application of FermiNet to generic phases of matter.
We demonstrate the flexibility of the periodic FermiNet

by studying the quantum phase transition between the
Fermi liquid and Wigner crystal [31] in the three-
dimensional interacting homogeneous electron gas
(HEG) [32]. Two-dimensional Wigner crystals were very
recently imaged for the first time [33–35], but three-
dimensional Wigner crystals have not yet been observed
in electronic systems and are thus less well understood. The
zero-temperature properties of the three-dimensional HEG
depend on a single dimensionless parameter rs defined as
the ratio of the radius of a sphere that contains one electron
on average to the Bohr radius. At high density (small rs),
the ground state is a weakly interacting Fermi liquid. At low
density (large rs), the correlations are stronger and the
translational symmetry breaks spontaneously, giving rise to
a spatially ordered Wigner crystal [31].
We find that the same neural network architecture learns

the appropriate ground-state wave function either side of
the Wigner phase transition, spontaneously breaking con-
tinuous translational symmetry when the crystal phase is
stable. As we give the network no information about the
nature of the ground state, the degree of inductive bias in
the determination is very low.
The Hamiltonian for a finite HEG of N electrons subject

to periodic boundary conditions is

H ¼ −
1

2

XN

i¼1

∇2
i þ UCoulomb; ð1Þ

where the indices i label the N electrons in the simulation
cell andUCoulomb is the Coulomb energy per simulation cell
of an infinite periodic lattice of identical copies of that cell In
practice, the Coulomb energy is evaluated using the Ewald
method [36,37]. We work in Hartree atomic units, where
energies are measured in hartrees (1 Ha ≈ 27.211 eV) and
distances in Bohr radii.
The wave function represented by a FermiNet is a sum of

determinants of many-electron functions [1,3]:

ΨðfxjgÞ ¼
Xndet

k

det½ψk
i ðxj; fx=jgÞ�; ð2Þ

where x ¼ ðr; αÞ labels the spatial and spin coordinates of
an electron, and the set fx=jg includes all electron coor-
dinates except xj. The orbital ψk

i ðxj; fx=jgÞ depends on the
coordinates xj of the jth electron, and, in a permutation-
invariant fashion, on the set of all other electron coordi-
nates. The use of many-electron orbitals makes a FermiNet
determinant much more flexible than a Slater determinant
of one-electron orbitals, and a linear combination of a small
number of FermiNet determinants has a much greater
representational capacity than a linear combination of a
similar number of Slater determinants [1]. The original
FermiNet architecture assumed, as is conventional in
variational Monte Carlo (VMC) [38], that the determinants
in Eq. (2) can be factorized into spin-up and spin-down
determinants. Removing this constraint has proven to be
more accurate (see Supplemental Material [39]) and is
used here.
FermiNet uses a neural network to approximate the

many-electron orbitals appearing in the determinants [1].
The network consists of two parallel streams, for process-
ing one-electron and two-electron information. The one-
electron stream is constructed of repeating blocks, where
each block contains a nonlinear layer and a permutation-
equivariant function. The two-electron stream is a com-
paratively small fully connected feed-forward network. The
outputs of the one- and two-electron streams at each layer
are fed into the permutation-equivariant function. The
multiple outputs of the one-electron stream are fed through
a final linear layer to produce the required number of many-
electron functions fϕkα

i g. Finally, the network outputs are
multiplied by a parametrized envelope f to produce the
many-electron orbitals ψkα

i ðrÞ ¼ fkαi ðrÞϕkα
i ðrÞ. The elec-

tron position vectors ri and norms krik, and the electron-
electron separation vectors ðri − rjÞ and norms kri − rjk,
are supplied as inputs to the network. Full details of the
network architecture are given in Ref. [1] and the
Supplemental Material [39].
To adapt the FermiNet architecture to periodic systems, it

is sufficient to modify the input features to ensure that
periodic boundary conditions are satisfied. Periodic input
features are most easily expressed in the basis fa1; a2; a3g
of primitive Bravais lattice vectors of the simulation cell.
For an arbitrary vector, r≜s1a1 þ s2a2 þ s3a3, the periodic
input features are obtained from the fractional coordinates
si via the componentwise transformation si → ½sinð2πsiÞ;
cosð2πsiÞ�. A periodic analog of the Euclidean norm may
be defined as

ksk2p ¼
X

ij

½1 − cosð2πsiÞ�Sij½1 − cosð2πsjÞ�

þ sinð2πsiÞSij sinð2πsjÞ; ð3Þ

where Sij ¼ ai · aj acts as a metric tensor in the fractional
coordinate system. This definition of the norm is smooth,
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periodic with respect to the simulation cell, and propor-
tional to the Euclidean norm as s → 0. Unlike the simpler
norm introduced in Ref. [40], it retains these properties for
noncubic simulation cells. Convergence speed and asymp-
totic convergence are improved by including an envelope of
the form

fkαi ðrÞ ¼
X

m

½νkαim cosðkm · rÞ þ μkαim sinðkm · rÞ�; ð4Þ

for real wave functions, or

fkαi ðrÞ ¼
X

m

νkαim expðikm · rÞ; ð5Þ

for complex wave functions. The km are simulation-cell
reciprocal lattice vectors up to the Fermi wave vector of the
noninteracting electron gas, and νkαim, μkαim are learnable
parameters. Finally, when simulating the electron gas, the
absence of nuclei (and hence electron-nuclear cusps)
removes the need to include the norms of the electron
positions as inputs. The FermiNet wave function is opti-
mized using the VMC method [38]. Unless specified, all
calculations used the same training procedure and hyper-
parameters as in Ref. [1]. Further details are given in the
Supplemental Material [39].
Table I shows the results of FermiNet calculations of the

total energy of a 14-electron simple cubic simulation cell of
unpolarized HEG at four different densities. This system is
sufficiently small that near-exact initiator full configuration
interaction quantum Monte Carlo (i-FCIQMC) bench-
marks are available [41,42].
However, the fermion sign problem in FCIQMC

increases rapidly with rs, rendering i-FCIQMC calcula-
tions at low densities with large basis sets impractical; the
calculations at rs ¼ 5 were ∼104 times more expensive
than those at rs ¼ 1 [41]. There is no clear systematic trend

with the disagreement between FermiNet and i-FCIQMC;
FermiNet is 4–6 mH above i-FCIQMC at rs < 5 and 1 mH
above at rs ¼ 5. The variance in the FermiNet energies
decreases with rs; however, the magnitude of the total
energy of the N ¼ 14 HEG (see Supplemental Material
[39]) also decreases sharply with rs. As a result, it is
ambiguous if the relative accuracy of FermiNet is greater at
lower density. Table I also includes VMC and fixed-node
diffusion Monte Carlo (DMC) results calculated using a
conventional Slater-Jastrow backflow (SJB) wave function.
Although FermiNet is a VMC method, it achieves an

accuracy similar to that of SJB DMC, with both approaches
obtaining 99%of the i-FCIQMCcorrelation energy extrapo-
lated to the complete basis set limit (which may be 1–2 mHa
too large [43]). FermiNet obtains a similar fraction of the
correlation energy for molecular systems with a comparable
number of electrons [1]. Again as in molecular systems,
calculations using 16 FermiNet determinants are noticeably
better than calculations using one FermiNet determinant.
To assess the performance of FermiNet as the strength of

the correlation increases, we study the N ¼ 27 electron
spin-polarized HEG in the density range from rs ¼ 1 to 90
in a body-centered cubic (bcc) cell, as this minimizes the
packing density and has the lowest Madelung energy [31]
of the Wigner crystal in the low-density limit. Prior work
[44,45] had found Wigner crystallization to occur in the
interval rs ¼ ½100; 110�, although a recent study [46]
lowers this estimate substantially. The 27-electron system
studied here is very small and there are substantial finite-
system-size effects that broaden the phase transition and
move it to a much higher density.
Ground-state energies obtained using the VMC method

with a FermiNet wave function and using the VMC and
DMCmethods with SJB wave functions targeted at gas and
crystal states are compared in Fig. 1(a) for the 27-electron
system. For rs ≤ 1, real-valued FermiNets often become
trapped in local minima during optimization, with energies

TABLE I. Correlation energy of the spin-unpolarized N ¼ 14 HEG with simple cubic boundary conditions. The
i-FCIQMC energies [41] were calculated using a basis of 778 plane wave orbitals for rs ¼ 5.0 or 2378 plane waves
otherwise, corresponding to Hilbert spaces of 1024 and 1031 Slater determinants, respectively. The extrapolation of
i-FCIQMC results to the complete basis set limit may yield correlation energies that are 1–2 mHa too negative [43].
bolded values indicate the lowest energy in each column

Correlation energy (Ha)

Method rs ¼ 0.5 rs ¼ 1.0 rs ¼ 2.0 rs ¼ 5.0

SJB (ndet ¼ 1)
VMC −0.58624ð1Þ −0.5254ð1Þ −0.437ð3Þ −0.30339ð2Þ
DMC −0.58778ð1Þ −0.5254ð1Þ −0.4385ð3Þ −0.30474ð8Þ

FermiNet
ndet ¼ 1 −0.58895ð6Þ −0.52568ð3Þ −0.43881ð1Þ −0.30468ð1Þ
ndet ¼ 16 −0.59094ð6Þ −0.52682ð3Þ −0.44053ð1Þ −0.30495ð1Þ

i-FCIQMC [41]
Finite basis −0.5939ð4Þ −0.5305ð5Þ −0.4430ð7Þ −0.304ð1Þ
Basis set limit −0.5969ð3Þ −0.5325ð4Þ −0.4447ð4Þ −0.306ð1Þ
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typically ∼0.1% higher than the SJB DMC benchmarks.
Complex-valued FermiNets do not become trapped in local
minima at these densities, and converge to wave functions
with a uniform-in-space complex phase, indicating that a
complex wave function improves optimization, rather than
simply increasing representational capacity. All other
results were obtained with real wave functions. The SJB
Ansätze used to describe gases and crystals are detailed in
the Supplemental Material [39] and Ref. [45]. FermiNet
VMC calculations produce a tighter variational lower
bound than both the SJB gas and crystal wave functions
at all densities. Furthermore, FermiNet outperforms fixed-
node DMC calculations based on a SJB gas wave function
across the entire density range, even at rs ≤ 1. In the low-
density regime, fixed-node DMC calculations using the
SJB crystal wave function give slightly better results than
our FermiNet VMC calculations. These results suggest that
the nodal surface of the SJB crystal wave function is highly
accurate but that the shape of the wave function away
from the nodal surface is captured better by FermiNet.
Figure 1(b) shows scans of the one-electron density of
FermiNet wave functions at rs ¼ 10 and 70 in the ða2;a3Þ
plane, which is normal to the (011) direction of the conven-
tional bcc cell. Figure 1(c) shows the Fourier component of
the one-electron density ρ̃ (see SupplementalMaterial [39]),
an order parameter appropriate for the Wigner crystal, as
calculated from VMC simulations using FermiNet and SJB
gas and crystal wave functions. These results show that
FermiNet is capable of learning wave functions in both the
gas and Wigner crystal states to very high accuracy with-
out any handcrafted features indicating whether the
wave function should be localized or diffuse, any specific

designation of crystal sites, or any other information that a
transition should occur. Unlike the gas and crystal SJB trial
wave functions required to describe the gaseous and
crystalline states accurately, the FermiNetAnsatz is identical
across the entire density range.
The HEG Hamiltonian is symmetric under the simulta-

neous translation of all electron coordinates. Thus, the
true ground state of the Wigner crystal is uniform in the
one-electron density, with the crystal appearing only in
the pair-correlation function. This is known as a “floating
crystal” state [47,48]. In Refs. [45,46], it is shown that the
energy difference between the fixed and floating crystal is
approximately ΔE ¼ 0.055r−3=2s . While FermiNet differs
from Slater-type wave functions used to derive ΔE, we
expect a similar reduction in kinetic energy. At low rs, ΔE
is large (20 mHa at rs ¼ 2), so we would expect FermiNet
to learn the floating crystal state. Figures 1(b) and 1(c)
show that FermiNet instead learns the fixed crystal. The
notion of a fixed origin can be removed by removing
the one-electron features; however, we find this increases
the energy obtained. This suggests that the two-electron
stream is insufficiently flexible to fully describe the two-
electron correlations in the Wigner crystal without help
from the one-electron stream. Improving the flexibility of
the two-electron stream will be the focus of future work. We
do not believe that these issues impact the central con-
clusion of the present Letter, and stress that in real con-
densed matter systems the Hamiltonian does not possess
continuous translational symmetry.
Other recent works have explored using neural networks

to represent wave functions in real-space periodic systems.
Pescia et al. use a DeepSets architecture to study bosons in

FIG. 1. The N ¼ 27 spin-polarized homogeneous electron gas in a body-centered cubic (bcc) simulation cell. (a) Single-determinant
Slater-Jastrow backflow (SJB) ground-state total energies per electron relative to FermiNet. The “gas” and “crystal” results were
obtained using SJB wave functions built using determinants of plane waves and Gaussian orbitals, respectively. Error bars are smaller
than the markers. FermiNet results for rs ≤ 1 used complex wave functions. the FermiNet VMC method yields a variational
improvement over the SJB VMC and SJB DMC method results in the gas phase and over the SJB VMC method results in the crystal
phase. (b) One-electron density from the FermiNet VMC method at rs ¼ 10 (left) and 70 (right), projected into the (011) plane of the
conventional bcc structure. Four simulation cells are shown. Length scales are normalized by rs, such that the apparent length scales are
equivalent and crystal sites are superimposable. (c) Order parameter averaged over crystal axes for the bcc Wigner crystal state. Error
bars are smaller than the markers. At small values of rs, the order parameter is ∼0, corresponding to a uniform one-electron density
(gaslike); the order parameter rises sharply to a finite value at rs ¼ 2, corresponding to the emergence of a crystalline state.
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1D and 2D, obtaining results competitive with conventional
DMC result [40]. The iterative backflow network approach
of Holzmann and co-workers [49–51] represents Jastrow
and backflow functions in a manner equivalent to fully
connected neural networks. They observe liquid and solid
phases of 2D (bosonic) 4He [50], but the application to the
HEG [51] gives a higher energy at low density than the
crystal state observed by Drummond et al. [45]. Recently,
two related works have been reported. Wilson et al.
presented FermiNet-based and iterative backflow results
for the 14-electron system studied here, plus 7- and 19-
electron HEGs [52]. Although they used a more heavily
modified version of the FermiNet architecture and include a
backflow-based term in the orbitals, their results are similar
to ours. Li et al. used a similar but smaller FermiNet
architecture to ours, with simpler periodic inputs and no
envelope function, to study the N ¼ 54 HEG along with
other atomic solids [53], but do not outperform their SJB
VMC or DMC baseline energies. Neither of these two
works address Wigner crystallization. We expect that other
FermiNet-derived models are capable of discovering phase
transitions, as in the present Letter; however, we are unsure
if this applies to the heavily modified Ansatz of Wilson
et al. which introduces a higher degree of inductive bias via
the inclusion of Hartree-Fock orbitals in the determinant.
Applying any of the aforementioned approaches to fer-
mionic systems, including FermiNet, incurs the same
OðN3Þ scaling of determinant evaluation. An additional
factor of N is introduced if analytic gradients are not
available and the Laplacian must be evaluated via auto-
matic differentiation.
To summarize, we have extended the FermiNet neural

wave function to calculations with periodic boundary
conditions. This we accomplished by making minimal,
physically motivated, modifications to render the input
features periodic, and by adding a periodic envelope
function. As proof of concept, we have demonstrated the
accuracy of the modified architecture on the N ¼ 14 HEG,
where we obtained ∼99% of the correlation energy and
slightly outperformed VMC and DMC calculations using
conventional one-determinant SJB trial wave functions. For
the N ¼ 27 HEG, we see that FermiNet is capable of
learning the localized Wigner crystal phase a priori,
producing energies in excellent agreement with SJB trial
wave functions which encode the qualitative nature of the
ground state in their construction. This suggests that
FermiNet may be capable of determining novel quantum
phases in condensed matter given only the Hamiltonian.
To study quantum phase transitions in realistic strongly

correlated electronic systems, it will be necessary to scale to
larger numbers of electrons to overcome finite-size effects.
However, the scaling required to achieve a fixed accuracy per
electron is not yet known. Achieving an acceptable accuracy
at an affordable scalingmay require additional innovations in
the neural network architecture employed. FermiNet could

also be used as a trial wave function for DMC calculations in
periodic boundary conditions, an approach that yields small
improvements in molecular systems [4]. More generally, we
believe that the flexibility and accuracy offered by neural
networks make them promising tools for studying complex
correlation effects and other emergent phenomena. The
advantages of neural-network-based methods are most
compelling when the phenomena in question are unexpected
or not yet understood.

This work was undertaken with funding from the UK
Engineering and Physical Sciences Research Council (EP/
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