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In time-reversal invariant systems, all charge Hall effects predicted so far are extrinsic effects due to the
dependence on the relaxation time. We explore intrinsic Hall signatures by studying the quantum noise
spectrum of the Hall current in time-reversal invariant systems, and discover intrinsic thermal Hall noises in
both linear and nonlinear regimes. As the band geometric characteristics, quantum geometric tensor and
Berry curvature play critical roles in various Hall effects; so do their quantum fluctuations. It is found that
the thermal Hall noise in linear order of the electric field is purely intrinsic, and the second-order thermal
Hall noise has both intrinsic and extrinsic contributions. In particular, the intrinsic part of the second-order
thermal Hall noise is a manifestation of the quantum fluctuation of the quantum geometric tensor, which
widely exists as long as Berry curvature is nonzero. These intrinsic thermal Hall noises provide direct
measurable means to band geometric information, including Berry curvature related quantities and
quantum fluctuation of quantum geometric tensor.
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Introduction.—The quantum geometric tensor (QGT)[1–
5] has fundamental importance in modern condensed
matter physics, since it contains the band geometry and
topology information of the underlying Hamiltonian. The
imaginary part of QGT, Berry curvature[6], plays a criti-
cal role in various Hall effects, such as the quantum Hall
effect [7], quantum spin Hall effect [8,9], quantum anoma-
lous Hall effect [10–12], etc. The dipole moment of Berry
curvature, i.e., Berry curvature dipole (BCD) [13,14], can
induce an extrinsic second-order nonlinear Hall effect in
time-reversal (TR) invariant systems, which has been inten-
sively discussed [15–22] and experimentally verified [23–
29]. It was found that extrinsic mechanisms such as skew
scattering can dominate the second-order Hall effect in
thick Td-MoTe2 samples and result in giant c-axis non-
linear Hall conductivity [30]. Intrinsic response properties,
which are independent of the relaxation time and not
affected by the scattering process, can directly probe band
information related to Berry curvature as well as QGT, and
hence are of special interest. Up to now, intrinsic linear
spin Hall effect has been proposed in both TR-invariant
systems [31] and TR-broken systems [32]. In the nonlinear
regime, intrinsic second-order anomalous Hall effects have
been reported in TR-broken systems recently [33–35]. As
far as we know, in TR-invariant systems, intrinsic charge
Hall transport phenomenon induced by Berry curvature or
QGT has not been predicted.
The Hall effect refers to the transverse current or voltage

in response to the driving electric field. In various Hall

transport, quantum fluctuation of currents widely exists.
Such quantum fluctuation or quantum noise originates from
the quantum nature of charge carriers, where quantum
interference and the Pauli exclusion principle play impor-
tant roles [36]. Therefore, in addition to the average current,
quantum noise associated with the Hall current, i.e., the
Hall noise spectrum, and higher-order correlations [37,38],
are needed to fully characterize Hall transport properties, as
well as the underlying Berry curvature and QGT. In
topological insulators, quantum noise has been proposed
to assess the quality of edge state transport [39–42], which
is experimentally measured in HgTe quantum wells [43,44]
and InAS=GaðInÞSb structures [45]. Quantum noise has
also been utilized to identify strongly correlated nonlocal
Majorana states [46–51]. On the other hand, there are
attempts to measure QGT and related topological matters
[52–54], via superconducting qubit [55] or microwave
spectroscopy [56].
Several questions arise: is there any intrinsic charge

Hall signature in time-reversal invariant systems? How can
the quantum noise of the Hall current and fluctuation of the
quantum geometric tensor be described? What is the
relation between them?
In this Letter, we answer these questions by studying

quantum current correlation in coherent transport and
identifying its relation to QGT. In TR-invariant systems,
when expanding the thermal noise spectrum in terms of the
electric field at low voltage, we find intrinsic thermal Hall
noises in both linear and nonlinear response regimes, which
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are explicitly expressed in terms of Berry curvature related
quantities. The linear thermal Hall noise is purely intrinsic,
and an interesting dual relation on BCD is established
between the extrinsic second-order Hall current and this
intrinsic linear Hall noise in two-dimensional (2D) systems.
The intrinsic part of the second-order thermal Hall noise is
contributed by quantum fluctuation of Berry curvature,
which is the manifestation of the quantum fluctuation of
QGT. The Hall noise spectrum can be easily measured on
platforms similar to previous detection of the BCD-induced
second-order Hall effect [23–28], and we propose feasible
strategies to extract Berry curvature fluctuation from the
noise signals. Berry curvature fluctuation in 3D systems is
also discussed, which is directly accessible via a three-step
measurement. These findings reveal that QGT related
information, i.e., Berry curvature dipole and Berry curva-
ture fluctuation, are qualitatively measurable through the
intrinsic thermal Hall noises of TR-invariant systems.
Hall noise spectrum.—Considering a system with TR

symmetry T and nonzero Berry curvature, we examine the
noise spectrum of the Hall current, i.e., the Hall noise
spectrum. We start with the current density operator for dc
transport (ℏ ¼ e ¼ 1)

Ĵa ¼
X
mn

Z
k
â†mânðvnma − εabcΩnm

b EcÞ: ð1Þ

Here â†m is the creation operator such that hâ†mâni ¼ fmδmn
with fm the nonequilibrium Fermi distribution function for
band m. When n ¼ m, vnna ≡ vna ¼ ∂ϵn=∂ka is the group
velocity with ϵn the band energy. When n ≠ m, vnma ¼
iðϵn − ϵmÞAa

nm is the interband velocity matrix [33], with
Aa
nm ¼ hnji∂ka jmi the interband Berry connection. εabc is

the Levi-Civita tensor. Similarly, Berry curvature Ωnm
c ≡

1
2
εabc

P
l iðAa

nlA
b
lm − Ab

nlA
a
lmÞδ̄lnδ̄lm (δ̄ln ¼ 1 − δln) contains

both intraband (n ¼ m) and interband (n ≠ m) contribu-
tions [57]. a, b, and c label x, y, and z in Cartesian
coordinates. Thus Ec stands for the electric field in the c
direction.
Quantum correlation of the current density is defined

as [36] δð0ÞSab ¼ hðΔĴaÞðΔĴbÞi, where ΔĴa ¼ Ĵa − hĴai
and hĴai is the expectation value of Ĵa. The quantum noise
has two contributions. One vanishes at zero temperature
and is referred to as thermal noise,

STab ¼
X
n

Z
k
fnð1 − fnÞðvna − εabcΩn

bEcÞ

× ðvnb − εbb1c1Ω
n
b1
Ec1Þ: ð2Þ

The other corresponds to the shot noise,

SSab ¼
1

2

X
m≠n

Z
k
f̄mnðvnma − εabcΩnm

b EcÞ

× ðvmn
b − εbb1c1Ω

mn
b1
Ec1Þ; ð3Þ

where the factor f̄mn ¼ fmð1 − fnÞ þ fnð1 − fmÞ ensures
that SSab is finite at zero temperature. The detection of shot
noise requires low temperature, where SSab dominates the
noise spectrum in the high voltage regime [36], i.e., eEl ≫
kBT with l the system size. In contrast, thermal noise is
dominant at low voltage eEl ≪ kBT [36] and easily
measurable via temperature-dependent experiments in large
temperature ranges, from several Kelvin [58] to room
temperature [59]. In the following, we focus on the thermal
noise in the regime eEl ≪ kBT. For simplicity, STab is
denoted as Sab, and all noises discussed below are thermal
noises.
For a particular band n [60], Eq. (2) can be transformed

into a compact vector form,

Sab ¼
Z
k
fnð1 − fnÞðv −Ω ×EÞaðv −Ω ×EÞb: ð4Þ

Sab is a second-rank symmetric tensor. Its diagonal ele-
ments, Saa (a ¼ x, y, and z), are autocorrelation of currents
and contain the Hall noises. The off diagonal elements,
Sab ¼ Sba (a ≠ b), correspond to the cross-correlation
function. Expanding Sab in terms of the electric field in
the regime eEl ≪ kBT, we have

Sab ¼ Sð1Þab þ Sð2Þab þOðE3Þ…; ð5Þ
where Sð1Þab and Sð2Þab are the linear and second-order noise in
electric field, respectively.
The linear noise is obtained from Eq. (4):

Sð1Þab ¼ −kBT
Z
k
f0½∂aðΩ ×EÞb þ ∂bðΩ ×EÞa�: ð6Þ

Here ∂a ≡ ∂ka and f0 is the equilibrium distribution
function. Denoting the BCD pseudotensor in matrix form
as Dab ¼ ðDx;Dy;DzÞT with Da ¼

R
k f0∂aΩ, we find

Sð1Þab ¼ −kBTðDa ×EÞb − kBTðDb ×EÞa: ð7Þ

Symmetry analysis on Sð1Þab is presented in Sec. I(3) of the
Supplemental Material [61]. In 2D, point groups supporting

nonzero Sð1Þab are fC1; C1v; C2g, while in 3D they are
fCn; Cnv; D2; D2d; D3; D4; D6; S4g with n ¼ 1, 2, 3, 4, 6.
In 2D TR-invariant systems, onlyΩz can be nonzero, and

the highest symmetry allowed for nonvanishing BCD is
single mirror symmetry [13]. Consequently, BCD tensor
Dab is reduced to an in plane pseudovector. Labeling the
BCD vector as D ¼ Rk f0∇kΩz ¼ ðDx;DyÞ, the diagonal

element of Sð1Þab , i.e., the linear Hall noise, is written as

Sð1Þaa ¼ 2kBTDaẑ · ðâ × EÞ: ð8Þ

For the same system, the linear Hall effect vanishes
due to the time-reversal constraint. Hence the leading
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order Hall effect is the BCD-induced second-order Hall
current [13]:

Jð2Þ ¼ τẑ ×EðD ·EÞ: ð9Þ

In contrast to the extrinsic second-order Hall current which
scales with the relaxation time τ, the linear Hall noise Sð1Þaa is
an intrinsic property. The vector notation of linear Hall
noise is highly relevant to that of the second-order Hall
current. The nonlinear Hall current is optimal when electric
field E is aligned with BCD vector D, whereas it vanishes

for E⊥D. On the contrary, Sð1Þaa is nonzero when the electric
field is perpendicular to D.
Using g2 ¼ f0ð1 − f0Þ ¼ −kBT∂ϵf0, the second-order

noise is expressed as

Sð2Þab ¼ τ2
Z
k
½∂2cdg2 þ ∂cf0∂df0�vavbEcEd þ kBTET

aΩ
ð2Þ
ab Eb:

Here Ea ¼ E × â with a ¼ x, y, and z. The second term of

Sð2Þab is purely intrinsic and determined by Ωð2Þ
ab , a second-

rank symmetric tensor defined as Ωð2Þ
ab ¼ Rkð−∂ϵf0ÞΩaΩb.

Notice that Ωð2Þ
ab contains both autocorrelation of Berry

curvature (a ¼ b) and cross correlation of Berry curvature

(a ≠ b) which is nonzero only in 3D. We term Ωð2Þ
ab as the

Berry curvature fluctuation, a new signature of band
geometry, which is the second-order moment of Berry

curvature. Ωð2Þ
ab is observable in any systems with nonzero

Berry curvature, and hence intrinsic contributions from

Ωð2Þ
ab to the second-order noise always exist in the presence

or absence of T symmetry. We show in the following that

Ωð2Þ
ab is the manifestation of the quantum fluctuation

of QGT.
Quantum fluctuation of QGT.—From Refs. [62]

and [63], the QGT operator for band n is defined as

T̂nab ¼ ∂aP̂nð1 − P̂nÞ∂bP̂n; ð10Þ

where P̂n ¼ jnihnj [64]. We focus on 2D two-band systems
and define the QGT operator for the lower band as

T̂ ¼
 

ĝxx ĝxy − ið1=2ÞΩ̂xy

ĝyx − ið1=2ÞΩ̂yx ĝyy

!
; ð11Þ

which is a superoperator with components

ĝab ¼ ð1=2ÞðAa
01A

b
10j0ih0j þ Aa

10A
b
01j1ih1jÞ; ð12Þ

Ω̂ab ¼ iðAa
01A

b
10j0ih0j − Aa

10A
b
01j1ih1jÞ: ð13Þ

Clearly, the real part of QGT is the quantum metric gab,
which characterizes the distance between quantum

states [53,63]. Here T̂ and ĝab (denoted as Ô) are
Hermitian satisfying Ô†

ii ¼ Ôii and Ô†
ij ¼ Ôji, while Ω̂ab

is anti-Hermitian. Defining quantum fluctuation ΔO ¼
hÔ2i − hÔi2, we obtain (Sec. III of the Supplemental
Material [61])

ðΔgÞxx ¼ ð1=2Þg2xx − ðΔΩÞxx;
ðΔgÞyy ¼ ð1=2Þg2yy − ðΔΩÞyy;
ðΔgÞxy ¼ ð1=2Þðgxx þ gyyÞgxy;

and

ðΔΩÞxx ¼ ðΔΩÞyy ¼ −ð1=2Þðg2xy þ Ω2
xyÞ:

Here the minus sign reflects the anti-Hermitian nature of
Ω̂ab. Then we integrate ðΔΩÞxx and ðΔΩÞyy over the
Brillion zone to obtain the observable fluctuation
ΔΩ ¼ Rk f0ðϵÞ½ðΔΩÞxx þ ðΔΩÞyyÞ�. The quantum fluc-
tuation of Berry curvature has precise correspondence
with the semiclassical result ∂ϵðΔΩÞ ¼

R
kð−∂ϵf0ÞΩ2

xy ¼R
kð−∂ϵf0ÞΩ2

z ¼ Ωð2Þ
z , when gxy ¼ 0 for all k points. Two

notations Ωxy and Ωz are interchangeable [6]. We provide
several ways in Sec. III of the Supplemental Material [61]
to design such a Hamiltonian fulfilling gxy ¼ 0.
Nevertheless, quantum fluctuation of QGT is manifested
by quantum fluctuation of Berry curvature.
In 2D systems with nonzero Ωz, only Ωð2Þ

z ¼R
kð−∂ϵf0ÞΩ2

z exists as a positive scalar. In 3D, noncen-

trosymmetric point groups supporting nonvanishing Ωð2Þ
ab

are fC1; C1v; C3h; Cn; Cnv; D2d; D3h; Dn; S4; T; Td; Og
with n ¼ 2, 3, 4, 6. The symmetry analysis is very similar
to that in Ref. [13]. As an example, we show the energy

dependence of Ωð2Þ
z in Fig. 1(b) for a 2D model system, and

discuss how to extract Ωð2Þ
z from Hall noise signals later.

The third-order correlation Kabc is explicitly expressed
in Sec. I(3) of the Supplemental Material [61]. Following
this route, full-counting statistics [37,38] within the

(a) (b)

FIG. 1. (a) Band structure of the model system described by
Eq. (14). (b) Berry curvature fluctuation Ωð2Þ

z with respect to the
Fermi energy. Parameters: A ¼ 0, B ¼ 1, δ ¼ −0.25, v2 ¼ 1.0,
d0 ¼ 0.1 [65].
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Boltzmann approach are established. We also derive similar
expressions of the linear and second-order Hall noises
within the scattering matrix theory (SMT) to demonstrate
the agreement between these two methods, as shown in
Sec. II of the Supplemental Material [61] and Refs. [66–68]
therein. SMT is suitable for describing coherent nonlinear
transport in multiterminal systems [22,69].
We focus on the Hall noise spectrum, which can be

simultaneously probed with the Hall currents in one
measurement. Characteristics of the linear and second-
order Hall noises will be discussed for the following model.
2D tilted massive Dirac model.—The model

Hamiltonian under investigation is [65]

HðkÞ ¼ Ak2 þ ðBk2 þ δÞσz þ v2kyσy þ d0σx; ð14Þ

where A, B, v2, δ, and d0 are system parameters, and σx;y;z
are Pauli matrices. This model breaks inversion symmetry
I but preserves both T and mirror symmetry Mx; hence
BCD Dx exists. Its band structure is shown in Fig. 1(a).
Such a Hamiltonian describes 2D tilted massive Dirac
systems [65,70,71] and captures low-energy band fea-
tures of Td-WTe2 and topological crystalline insulator
SnTe [13,65].
For this model, the intrinsic linear Hall noises are

Sð1Þxx ¼ 2kBTDxEy; Jð2Þx ¼ 0;

Sð1Þyy ¼ 0; Jð2Þy ¼ −τDxE2
x: ð15Þ

The second-order Hall currents are also shown for com-
parison. Here Sð1Þxx is in response to the electric field in the y

direction, while Jð2Þy is driven by Ex, as demonstrated in
Fig. 2. Band geometry Dx can be extracted either from

extrinsic Hall current Jð2Þy , or from intrinsic Hall noise Sð1Þxx .
The BCD-induced second-order Hall effect has been
observed in large ranges of temperature and driving current
for a variety of materials [72], and we expect BCD-induced
linear Hall noise can be measured on similar platforms
[23,27,28].

The phenomena displayed in Eq. (15) appear to be

counterintuitive: (1) when nonlinear Hall current Jð2ÞH

vanishes, linear Hall noise is nonzero; (2) if Jð2ÞH is finite,

linear noise Sð1ÞH is zero. It can be understood as follows:

(1) Jð2ÞH ¼ 0 only means the average Hall current hĴHi is
zero up to the second order in electric field, but quantum

correlation of currents is finite, i.e., Sð1ÞH ≠ 0; (2) when

Jð2ÞH ≠ 0, only linear Hall noise Sð1ÞH vanishes [73], but the

second-order Hall noise Sð2ÞH exists (as discussed below).
Similar behaviors are reported in various nonequilibrium
transport [74,75]: a system with pure spin current has finite
charge noise when the average charge current vani-
shes [76,77]; zero-current nonequilibrium delta-T noise
is generated by pure temperature bias [78–81].
The second-order Hall noises for the model are

Sð2Þxx ¼ ½Myx þ kBTΩ
ð2Þ
z �E2

y; ð16Þ

Sð2Þyy ¼½Mxy þ kBTΩ
ð2Þ
z �E2

x; ð17Þ

Mab ¼ τ2
Z
k
½−kBT∂ϵf0∂2av2b þ ð∂ϵf0Þ2v2av2b�: ð18Þ

Without loss of generality, we set Ex ¼ Ey ¼ 1 in the

following discussion. There are two contributions in Sð2ÞH .
The first term Mab scales as τ2; hence we refer it as the
extrinsic Hall noise, whose existence is also confirmed by
SMT [Sec. II(2) of the Supplemental Material [61] ]. The

second intrinsic term is contributed by Ωð2Þ
z . It seems

difficult to extract Ωð2Þ
z from the second-order Hall noise

due to the presence of Mab. We propose two strategies to

isolate Ωð2Þ
z . (1) Energy dependence. For Sð2Þyy in Eq. (17),

we can split the extrinsic noise Mxy into two parts:

Mð1Þ
xy ¼ −τ2kBT

R
k ∂ϵf0∂

2
xv2y and Mð2Þ

xy ¼ τ2
R
kð∂ϵf0Þ2v2xv2y.

Figure 3(a) shows that bothMð1Þ
xy andMð2Þ

xy are much smaller

than kBTΩ
ð2Þ
z for small energies. Hence Ωð2Þ

z is easily

extracted in the small energy range. However, when Mð2Þ
xy

dominates the Hall noise for large energies, this strategy
fails. (2) Temperature scaling. The temperature dependence

of these noise terms is illustrated in Fig. 3(b), whereMð2Þ
xy is

inversely proportional to T while both Mð1Þ
xy and kBTΩ

ð2Þ
z

are directly proportional to T. When we scale them by

multiplying a factor kBT, Fig. 3(c) shows kBTM
ð2Þ
xy is

largely a constant. At low temperatures, e.g., T ¼ 10 K,

contributions from Mð1Þ
xy and kBTΩ

ð2Þ
z to Sð2Þyy are negligible

compared with Mð2Þ
xy . This motivates the following treat-

ment: (a) measure the Hall noise Sð2Þyy with respect to T;

(b)Mð2Þ
xy is subtracted from Sð2Þyy since kBTM

ð2Þ
xy is a constant

(a) (b)

FIG. 2. Schematics of the Hall effects for the 2D tilted Dirac
model. BCD Dx (arrow vector) is orthogonal to the mirror line
(dashed line). The electric field is applied along the x direction
in (a) while along the y axis in (b). Intrinsic linear Hall noise

Sð1ÞH and extrinsic second-order Hall current Jð2ÞH are expressed
in Eq. (15).
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obtained at T ¼ 10 K; (c) since kBTΩ
ð2Þ
z =jMð1Þ

xy j ≥ 10 [82]

in the temperature interval of Fig. 3(b), Ωð2Þ
z is obtained:

Ωð2Þ
z ≈

1

kBT

�
Sð2Þyy

E2
x
−Mð2Þ

xy

�
: ð19Þ

To ensure the applicability of this treatment, we analyze the

competition between kBTΩ
ð2Þ
z and Mð1Þ

xy with respect to EF

for different d0. d0 tunes the Berry curvature of the model.
In Fig. 3(d), with the increasing of d0, energy windows

fulfilling kBTΩ
ð2Þ
z =jMð1Þ

xy j ≥ 10 always exist (above the
dashed line). Therefore, this temperature scaling strategy

for isolating Ωð2Þ
z is widely applicable. Here we fix τ¼ 1 fs

to simplify the discussion. The temperature scaling strategy
works even better if τ is temperature dependent. As shown

in Sec. IV(3) of the Supplemental Material [61], Ωð2Þ
z is

obtained through simple curve fitting when τ as a function
of T is established. For the model Hamiltonian of Td-WTe2,

we numerically findΩð2Þ
z ∼ 1 Å2=eV in Fig. 1(b). For SnTe,

Ωð2Þ
z ∼ 0.01 Å2=eV [Sec. IV(1) of the Supplemental

Material [61] and Ref. [83] ].
Discussion.—The thermal Hall noise spectrum and Berry

curvature fluctuation can be investigated in experimental
platforms which were previously adopted to study BCD-
induced second-order Hall effect [23–28]. The measure-
ment of thermal noise has been developed as a standard
technique for over two decades [58,59,85,86].

In 3D systems, Berry curvature may have more than one
nonzero component and could induce an additional intrin-
sic term in the second-order Hall noise, which corresponds
to cross correlation of the Berry curvature. We find

Sð2Þxx ¼ ½Myx þ kBTΩ
ð2Þ
z �E2

y þ ½Mzx þ kBTΩ
ð2Þ
y �E2

z

þ kBTΩ
ð2Þ
zy EyEz: ð20Þ

With both T and Mx symmetries, Ωð2Þ
zy ¼ Rkð−∂ϵf0ÞΩzΩy

is an even function of k hence nonvanishes. To detect Sð2Þxx ,
the electric field is applied along the ŷ cos θ þ ẑ sin θ
direction. Rotating the electric field in the y-z plane by

changing θ, we can determine the three terms of Sð2Þxx . The
first (second) term is probed at θ ¼ 0 (θ ¼ π=2), and the
third term is obtained by subtracting the other two terms

from Sð2Þxx measured at θ ≠ 0, π=2. Note that Ωð2Þ
zy is directly

accessible through this three-step measurement, and only
observable in 3D.
In summary, by studying the thermal Hall noise spectrum

of time-reversal invariant systems, we have found intrinsic
Hall noises in both linear and nonlinear response regimes,
which are all related to the Berry curvature as well as
quantum geometric tensor. The intrinsic linear Hall noise is
proportional to the Berry curvature dipole. The second-
order Hall noise has intrinsic contribution from Berry
curvature fluctuation. These intrinsic thermal Hall noises
are the manifestation of the quantum geometric tensor and
its quantum fluctuation, which can be detected on platforms
such as Td-WTe2.
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