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For equilibrium systems, the magnitude of thermal fluctuations is closely linked to the dissipative
response to external perturbations. This fluctuation-dissipation relation has been described for material
particles in a wide range of fields. Here, we experimentally probe the relation between the number
fluctuations and the response function for a Bose-Einstein condensate of photons coupled to a dye reservoir,
demonstrating the fluctuation-dissipation relation for a quantum gas of light. The observed agreement of the
scale factor with the environment temperature both directly confirms the thermal nature of the optical
condensate and demonstrates the validity of the fluctuation-dissipation theorem for a Bose-Einstein
condensate.
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The fluctuation-dissipation theorem, relating the thermal
fluctuations of a system at temperature T to its response to
an external perturbation by the thermal energy kBT, is a
cornerstone of statistical mechanics [1,2]. Experimentally, it
has been observed in a wide range of systems, e.g., with
particles undergoing Brownian motion [3], the statistical
fluctuations of electrical currents in resistors [4], and more
recently also in cold atomic gas settings [5–7], including
two-dimensional Bose superfluids in the strongly interact-
ing regime [8,9]. The relation provides an elegant approach
to access microscopic properties of a system (fluctuations)
by probing the response on a macroscopic level (dissipa-
tion), allowing one to determine equilibrium quantities such
as the structure factor, which would be difficult to access
otherwise [10,11].
For Bose-Einstein condensates, despite that this phase is

one of the most thoroughly investigated quantum states of
matter, the fluctuation-dissipation theorem could so far not
be examined. In cold-atom condensates, thermal number
fluctuations are strongly suppressed [12,13], and in
optical condensates, the driven-dissipative nature of such
systems [14] has kept the possibility for a successful test
of the fluctuation-dissipation relation an open question.
Interestingly, the fluctuation-dissipation relation can be
extended to nonequilibrium systems in steady state such as
lasers [15]; however, there the scaling with temperature—a
universal quantity—is replaced by system-specific two-
point correlation functions [16,17]. Along this line, theory
work has recently pointed out that probing the validity of

the fluctuation-dissipation relation provides a very direct
and critical test of thermalization and allows one to
characterize the eventual departure from equilibrium in
optical quantum gases [18].
A new approach to study fluctuations and the correspond-

ing response function in the condensed phase has emerged
in quantum gases as exciton polaritons and photons,
where a coupling to reservoirs is realized [19–24]. In the
latter experiments using photons, other than for the case of
a blackbody gas, a thermodynamic phase transition to a
Bose-Einstein condensate can be observed, e.g., in two-
dimensional dye-filled optical microcavity systems [25–27].
Thermalization here is achieved by absorption-reemission
processes on dye molecules, which provide both an energy
and a particle reservoir due to the possible interconversion of
cavity photons and dye electronic excitations. This situation
can be described by a grand canonical ensemble model, a
physical setting for which unusually large fluctuations occur
in the condensed phase [28–31]. Experimentally, the corre-
sponding number fluctuations have been observed in the dye
microcavity system, with the magnitude of fluctuations
being tunable by adjusting the relative size of the condensate
and the effective reservoir [20,21].
In this Letter, we report a measurement of both the

spontaneous number fluctuations and the associated reactive
response of a photon Bose-Einstein condensate coupled to a
reservoir, demonstrating the validity of the fluctuation-
dissipation theorem for a Bose-Einstein condensate. By
tuning the reservoir size, we find that the relation applies
from canonical through to grand canonical conditions.
Within experimental uncertainties, the observed scaling
between fluctuations and the response is consistent with
kBT, where T ≈ 300 K is the temperature of the reservoir.
Such a critical test of the thermalized nature of an optical
condensate as well as its coupling to the reservoir goes
beyond earlier work that has verified, e.g., spectral
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properties and spatial redistribution of light in trapping
potentials [25,32–34], and is also of interest for thermom-
etry in complex lattice or quenched systems [35–37].
Our photon Bose-Einstein condensates are prepared in a

microcavity apparatus shown in Fig. 1(a), realized by two
curved mirrors filled with a dye molecule solution of
refractive index ñ ¼ 1.44; see Refs. [25,38] for details.
The cavity length D0 ¼ qλc=2ñ ≃ 1.4 μm on the order of
the optical wavelength λc ≈ 575 nm at mode number q ¼ 7
introduces a low-energy cutoff at ℏωc ≃ 2.1 eV, with
ωc ¼ 2πc=λc, speed of light c, and the reduced Planck’s
constant ℏ. In the microcavity, the photon dispersion
relation becomes two-dimensional and matterlike—i.e.,
energy scales quadratically with the wave vector; owing

to the mirror curvature, the photons are harmonically
trapped with frequency Ω=2π ≃ 40 GHz [25]. Other than,
e.g., in cold atoms or exciton polaritons, equilibration of the
ensemble does not occur by interparticle collisions but by
contact to a heat bath of photoexcitable dye molecules
at room temperature. Thermalization is effective when the
contact to the dye molecules dominates over losses, e.g.,
from mirror transmission [33], and the average photon
number is controlled by a laser beam pumping the dye.
Above a critical photon number, a Bose-Einstein condensate
forms in the cavity ground state [25–27]. Absorption and
emission processes frequently convert the condensed pho-
tons into dye excitations (and vice versa), leading to
statistical fluctuations of the condensate number. Thus,
the dye acts as a heat bath and also as a particle reservoir,
which enables tuning between a canonical and a grand
canonical ensemble description; see Fig. 1(b).
The predicted number fluctuations of a photon conden-

sate coupled to a reservoir of M dye molecules and its
response function can be calculated from a statistical
approach [29,30,38]. Here, the detuning Δ ¼ ωc − ω0

between the condensate and the zero-phonon line of the
dye ω0 ≃ 2πc=ð545 nmÞ serves as a control parameter; for
our experiment, Δ < 0. The exchange between photons
and dye excitations [see Fig. 1(b) (top)] preserves the total
number of excitations X ¼ nþMe with n condensate
photons and Me ¼

P
M
i¼0 fi dye excitations; here, fi ¼

f0; 1g refers to the ith dye molecule being in the electronic
ground (0) or excited state (1), respectively. This assumption
is well justified due to the small overlap of the excited
molecules in the ground mode volume with the higher-lying
photon modes in the harmonic trap, such that a reservoir-
mediated cross-coupling is, in general, weak and, due to the
spatially near-uniform excitation level, such that (on aver-
age) excitations do not flow to or away from the ground
mode reservoir. In thermodynamic equilibrium, one obtains
the photon number probability distribution for n particles in
the Bose-Einstein condensate:

Pn ¼
1

Z
M!

ðM − X þ nÞ!ðX − nÞ! e
−nðℏΔ=kBTÞ; ð1Þ

where the partition function Z is determined by normali-
zation

P
n Pn ¼ 1. Note that Eq. (1) is derived by assuming

thermal contact of the total system of photons and dye
molecules to a heat bath (the solvent). Microscopically,
the detuning dependence of Pn is understood from the
Kennard-Stepanov relation Babs=Bem ¼ expðℏΔ=kBTÞ
between the molecular Einstein coefficients for absorption
Babs and emission Bem of condensate photons. This detailed
balance condition for large negative Δ energetically favors a
relatively large photon number hni as compared to the
(generally larger) number of excited molecules hMei;
see the left panel in Fig. 1(b); for Δ → 0−, on the other
hand, hMei by far exceeds hni and presents the dominant

(b)(a)

(c)

FIG. 1. (a) Experimental scheme to measure the number
fluctuations and the response function of a photon Bose-Einstein
condensate coupled to a reservoir inside a dye microcavity. Part
of the cavity emission recorded with a photomultiplier (PMT)
yields the mean condensate population hni; the other part is
dispersed on a grating, and the spectrally filtered condensate
evolution is recorded with a streak camera, giving gð2ÞðτÞ and the
dye-cavity detuning Δ. Bottom: time-integrated spectrum show-
ing the condensate mode at ωc, well separated from the first
excited states in the harmonic potential with trapping frequency
Ω. (b) The reservoir is realized by Me excited molecules (energy
per molecule ≃ℏω0), coupled to n condensate photons (energy
per photon ℏωc) by interconversion (top). The cavity length
controls Δ, adjusting the ratio between photons and excited
molecules (middle). Bottom: When detuning from resonance, the
predicted photon number and the response (red) sharply increase;
at this point, the system starts to minimize its free energy by
creating photons instead of maximizing the entropy in the
molecular reservoir (see the text). At large negative detunings
Δ → −∞, where hni → X, the response gradually falls off to 0.
(c) Spectrally resolved streak camera traces showing random
arrival times of coherent photons for large jΔj (top) and bunched
photons at small jΔj (bottom).
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contribution to X (right panel). Correspondingly, we can
define an effective reservoir size Meff ¼ M=½2þ 2 cosh
ðℏΔ=kBTÞ� based on the condition P0 ¼ P1 [20,29]. At
this point, which occurs for hni2 ¼ Meff, the photon number
statistics changes from super-Poissonian to Poissonian,
realizing a distinction point between the grand canonical
and canonical statistical regimes [38].
Using Eq. (1), the lowest moments hnki ¼ P

n n
kPn can

be expressed through first- and second-order derivatives of
the partition function: hni ¼ −Z−1ðkBT=ℏÞðdZ=dΔÞ and
hn2i ¼ Z−1ðkBT=ℏÞ2ðd2Z=dΔ2Þ. We obtain an expression
forming a fluctuation-dissipation relation

hΔn2i ¼ −
kBT
ℏ

�
dhni
dΔ

�
X;T

; ð2Þ

which connects the squared photon number fluctuations
hΔn2i ¼ hn2i − hni2 to a reactive response function
ðdhni=dΔÞX;T by thermal energy kBT (in angular fre-
quency units). The response function shown in the bottom
panel in Fig. 1(b) describes the susceptibility of the mean
condensate population hni to changes of the dye-cavity

detuning Δ at constant temperature T and excitation
number X; in other words, it qualifies how easy it is to
“compress” photons into the dye reservoir. The fluc-
tuation-dissipation relation in Eq. (2) directly translates
(intrinsic) thermal energy fluctuations of the dye molecules
determined by kBT into the magnitude of particle number
fluctuations via a scaling factor determined by the
response function ℏ−1ðdhni=dΔÞX;T .
Intuitively, the sharp increase of the response visi-

ble in Fig. 1(b) can be understood from an energy
argument: At each detuning Δ, the system minimizes
its free energy F ¼ E − TS by balancing the energy
reduction E ¼ nℏΔ from creating photons and the entropy
S ¼ kB lnfM!=½Me!ðM −MeÞ!�g in the dye molecules. At
sufficiently negative detunings, the energy gained by
creating photons prevails and F becomes minimal for
hni ¼ X −M=½1þ expð−ℏΔ=kBTÞ�. The onset of this
photon production occurs at ℏΔ=kBT ¼ ln½X=ðM − XÞ�
and exhibits a steep slope for large excitation numbers.
To measure the number statistics, fluctuations, and

response function of the photon condensate, the cavity
emission is dispersed on a high-resolution grating, and the
spectrally filtered condensate is recorded by time-resolved
photon counting on a streak camera; see Fig. 1(a). The
grating resolution 18 GHz < Ω=ð2πÞ allows us not only to
accurately determine Δ, but also to separate the condensate
photons from the thermal cloud and measure genuine
single-mode correlations without admixing of uncorrelated
photons in the lowest-lying excited modes; the time-
integrated spectrum in Fig. 1(a) shows the clear separation
of the condensate signal from higher-mode contributions.
Figure 1(c) shows exemplary data of the (attenuated) time-
resolved condensate emission during a single streak camera
exposure, from which both the photon number statistics and
the second-order correlations are derived after averaging
over many such traces. While for large negative detunings
photons are randomly distributed in time (top panel), a
condensate emitting bunches of photons is observed for
detunings closer to resonance (bottom). From our measure-
ments, we extract the condensate population and its fluc-
tuation for different detunings Δ, realized by changing the
cavity length. The average condensate number hni is
determined by monitoring part of the condensate emission
on a calibrated photomultiplier, while the fluctuations are
inferred from the second-order correlations, providing the
required input to validate Eq. (2).
Figure 2(a) shows measured second-order correlations

gð2ÞðτÞ as a function of the delay time τ [see Fig. 1(c)]
for different average photon numbers hni along with fits
(lines) [39] for fixed detuning. For large times, gð2ÞðτÞ
generically decays to unity, but for τ ≈ 0 and moderate hni,
photon bunching is observed. Figure 2(b) shows the varia-
tion of the fitted zero-delay correlation gð2Þð0Þ ¼ hn2i=hni2
versus hni in good agreement with theory (line). Notably,
this bunching amplitude provides a direct measure for the

(a) (b)

FIG. 2. Number fluctuations in the condensate mode from the
canonical to the grand canonical ensemble for a fixed dye-cavity
detuning Δ ¼ −4.571kBT=ℏ. (a) Second-order correlation func-
tions gð2ÞðτÞ for decreasing photon numbers hni along with fits
(solid line). For the largest hni ≈ 9140 (top panel), the condensate
is second-order coherent with gð2Þð0Þ ¼ 1.02� 0.08, indicating
Poissonian number statistics under canonical conditions. For
smaller hni ≈ f330; 26g, photon bunching in the grand canonical
condensate emission is observed with gð2Þð0Þ ¼ f1.79� 0.20;
1.96� 0.09g. (b) The zero delay gð2Þð0Þ as a function of hni shows
the crossover of the number statistics from the grand canonical
regime with

ffiffiffiffiffiffiffiffiffiffiffiffi
hΔn2i

p
=hni ¼ 1 to the canonical one withffiffiffiffiffiffiffiffiffiffiffiffi

hΔn2i
p

=hni ¼ 0, along with theory for M ¼ 1.8 × 108 (solid
line). Fluctuation levels are indicated by dashed lines, and error
bars are calculated from the uncertainties of the fit parameters.
The fit function fðτÞ ¼ 1þ C1eλ1τ þ C2eλ2τ [39], where λ1;2 ¼
−δ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − ω2

0

p
and C1;2 ¼ Y � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − δ2

p
Z, gives the fit para-

meters δ ≈ f0.38; 0.42; 0.45g ns−1, ω0 ≈ f0.43; 0.41; 0.10g ns−1,
Y ≈ f0.01; 0.39; 0.48g, and Z ≈ f0.15; 5.63; 1.09g for the three
cases in (a).
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number fluctuations hΔn2i ¼ ðgð2Þð0Þ − 1Þhni2, as con-
tained in Eq. (2). For a condensate population with
hni < ffiffiffiffiffiffiffiffiffi

Meff
p

, the observed bunching indicates the grand
canonical statistical regime. When increasing the photon
number, gð2Þð0Þ gradually approaches unity, signaling the
number statistics of a “usual” condensate in the canonical
statistical ensemble. For the data in Fig. 2, we haveffiffiffiffiffiffiffiffiffi
Meff

p
≈ 1350. For the smallest investigated condensate

mode occupation with hni ¼ 26, we find gð2Þð0Þ ≃ 1.96ð9Þ,
which within experimental uncertainties agrees with the
grand canonical prediction hΔn2i=hni2 ¼ 1.
To determine the reactive response function of the

condensate [see the right-hand side in Eq. (2)] requires
the derivative ðdhni=dΔÞX;T to be evaluated at constant
temperature T and excitation number X ¼ nþMe. The
molecular part Me is not directly accessible in our experi-
ments; we must, therefore, determine X indirectly from the
precisely measured hni and Δ. We reconstruct X by fitting
hni, recorded at different pump powers and dye-cavity
detunings, with theory

P
n nPn based on Eq. (1); here, we

use only X as a fit parameter, while the molecule numberM
and Δ are fixed. Each measurement, thus, yields fourfold
information fgð2Þð0Þ; hni;Δ; Xg, from which only the data
closest to the target value X ≈ 1.538 × 106 are retained for
further analysis. Note that we have also examined other
target values of X but find better statistics at the selected one

[see the top panel in Fig. 4(b)]. Figure 3(a) shows the
obtained first and second moments of the photon number as
a function of the detuning for the corresponding, fixed
excitation number. For large negative detunings, strongly
occupied condensates with suppressed fluctuations indicate
the canonical statistical regime. In the opposite limit of
detunings closer to resonance, a large fraction of X consists
of dye electronic excitations, forming the particle reservoir;
here, the reduced condensate occupancy with significant
fluctuations signals the onset of grand canonical statistics.
The interesting range of detunings, where the fluctuations
are significantly varying for constant X [Fig. 3(a), inset], is
spectrally narrow and covers only 0.004kBT=ℏ (≈25 GHz),
as well understood from the large number of excitations
X stored in the system.
Figure 3(b) shows the behavior of the relative effective

reservoir size Meff=hni2, which takes values below to well
above unity as the detuning is tuned closer to resonance. The
inset in Fig. 3(b) gives the photon chemical potential
μ¼ kBT ln ½ðX− hniÞ=ðM−XþhniÞ�−ℏΔ, which directly
depends on X via the ratio between excited and ground state
molecules [29,38]. At large negative detunings, μ ≃ 0, as
expected from Bose-Einstein statistics. Notably, in the
opposite, grand canonical limit, the chemical potential
becomes finite; nevertheless, jμj < ℏΩ indicates that the
system remains condensed.
Next, we examine the validity of the fluctuation-

dissipation relation in Eq. (2) by directly comparing the

(a) (b)

FIG. 3. (a) First and second moments of the photon number,
hni (red circles) and hn2i (blue diamonds), respectively,
as a function of the detuning Δ for X ≈ 1.538 × 106 and M ¼
1.5 × 108 along with theory (solid line). As the modulus of the
detuning jΔj is reduced, the condensate population hni de-
creases, as here more system excitations are present in the form
of excited molecules. The second moment hn2i decays with a
different slope, which is more clearly visible when comparing it
to hni2, showing the increase of gð2Þð0Þ ¼ hn2i=hni2 (green
squares, inset); at Δ ¼ −4.572kBT=ℏ, the statistics crosses over
from canonical to grand canonical conditions. (b) Relative
effective reservoir size Meff=hni2 and chemical potential μ
(inset) versus detuning. The particle reservoir grows to Meff >
6hni2 for small jΔj and to good approximation establishes grand
canonical conditions (with μ < 0). In the opposite limit of large
negative Δ, the particle reservoir shrinks, and canonical con-
ditions with μ ≈ 0 apply.

(a) (b)

FIG. 4. (a) Fluctuation-dissipation relation in a room-
temperature Bose-Einstein condensate. The squared number
fluctuations hΔn2i (red circles) and the scaled response function
−kBT=ℏðdhni=dΔÞX;T (blue diamonds) as a function of the
detuning Δ resemble both sides of Eq. (2). For comparison, we
also show the scaled compressibility kBTðdhni=dμÞT (green
squares), which agrees with hΔn2i only in the grand canonical
limit due to the here nonvanishing chemical potential. Lines give
theory based on Eq. (1). (b) The spectral temperature of the
photon condensate as obtained from the ratio of the independ-
ently measured hΔn2i and −kB=ℏðdhni=dΔÞX;T averages to
T ¼ 271ð30Þ K, which within its standard deviation (shading)
agrees with the ambient temperature ≈300 K. The top panel
shows extracted temperatures for other target values of X ≈
f1.535; 1.532g × 106 (blue diamonds, red triangles).
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condensate number fluctuations (see Fig. 3) to the response
function for varied detuning. Figure 4(a) shows the resulting
squared number fluctuations hΔn2i (red circles) and the
scaled response function −kBT=ℏðdhni=dΔÞX;T (blue dia-
monds) as a function of the detuning Δ, here for fixed
T ¼ 300 K. The good agreement between both datasets,
and with theory (solid line), gives evidence for the fluc-
tuation-dissipation relation to be well fulfilled in our system
in both the canonical and grand canonical regimes. We note
that in the latter case the fluctuation-dissipation relation can
be written in terms of the isothermal compressibility κT ¼
ðdhni=dμÞX;T [40]. We use the derivative ðdμ=dhniÞX;T ≃
−ℏðdΔ=dhniÞX;T − kBT=ð2MeffÞ to rewrite Eq. (2) and
obtain

hΔn2i ¼ 1
1

2Meff
þ 1

kBTðdhnidμ ÞX;T

⟶
Meff→∞

kBTκT; ð3Þ

which for large reservoirs Meff , corresponding to the
grand canonical regime, approaches the “textbook” form
of the fluctuation-dissipation relation [41]. The data
(green squares) in Fig. 4(a) show that the correction term
1=ð2MeffÞ can be neglected only deep in the grand
canonical regime, while for large negative detunings the
compressibility diverges.
Our measurements confirm the thermal nature of the

room-temperature Bose-Einstein condensate of photons in
a rigorous way. Figure 4(b) shows the deduced temper-
ature T ¼ −ℏ=kBhΔn2i=ðdhni=dΔÞX;T as a function of the
dye-cavity detuning, which agrees with room temperature
over the investigated range of detunings, and we find
T ¼ 271ð30Þ K. Physically, the results give evidence that
independent of the detuning the statistical number fluc-
tuations are driven by thermal energy, with correspond-
ingly varying “stiffness” of the response to perturbations.
In conclusion, we have demonstrated a fluctuation-

dissipation relation connecting the statistical number fluc-
tuations of a photon Bose-Einstein condensate coupled to a
dye reservoir with the reactive response of the condensate
population to variations of the relative energy scale of
system and reservoir constituents. The ratio between the
independently measured fluctuations and response function
agrees with thermal energy, confirming the thermalized
nature of the optical condensate. In the same breath, the
findings also give evidence for the thermal equilibrium
character of the molecular reservoir. For the future, probing
the dynamical response of the system after a fast perturba-
tion of the reservoir can allow us to extend the studies of
the fluctuation-dissipation relation to the time-dependent
regime. Other prospects include studies of fluctuations and
susceptibilities associated with photon transport, e.g., in
lattice or box geometries [31,40], and their applicability
to open quantum systems, which become accessible when
tuning thermalization and photon loss [39].
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