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We study the dynamics of perturbations around nonthermal fixed points associated with universal scaling
phenomena in quantummany-body systems far from equilibrium. For anN-component scalar quantum field
theory in 3þ 1 space-time dimensions, we determine the stability scaling exponents using a self-consistent
large-N expansion to next-to-leading order. Our analysis reveals the presence of both stable and unstable
perturbations, the latter leading to quasiexponential deviations from the fixed point in the infrared. We
identify a tower of far-from-equilibrium quasiparticle states and their dispersion relations by computing the
spectral function.With the help of linear response theory, we demonstrate that unstable dynamics arises from
a competition between elastic scattering processes among the quasiparticle states. What ultimately renders
the fixed point dynamically attractive is the phenomenon of a “scaling instability,” which is the universal
scaling of the unstable regime toward the infrared due to a self-similar quasiparticle cascade. Our results
provide ab initio understanding of emergent stability properties in self-organized scaling phenomena.
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Introduction.—One of the greatest challenges in physics
is to understand how emergent collective behavior arises
from the underlying quantum dynamics of a system. A
prominent example concerns universal scaling phenomena
associated with phase transitions after fine-tuning of
relevant parameters, such as adjustment to a critical
temperature [1]. By contrast, scaling phenomena without
fine-tuning of parameters can play an important role for the
buildup of complex structures, in particular, far from
equilibrium [2,3]. On a fundamental quantum level, impor-
tant examples include universal scaling in quantum many-
body systems associated with nonthermal fixed points,
which exhibit attractor properties [4]. Here the applications
range from relativistic collisions with heavy nuclei [5,6]
and early Universe cosmology [7,8] to experiments with
ultracold quantum gases, providing unprecedented data for
universal scaling in isolated [9–11] and driven systems
[12,13]. However, an understanding of the observation of
attractor behavior for scaling solutions based directly on the
underlying quantum dynamics is still missing.
In this Letter, we compute the stability properties of a

nonthermal fixed point for an interacting scalar quantum
field theory in 3þ 1 space-time dimensions from first
principles. While the approach to universal scaling be-
havior of this system is known to be observed from a wide

range of far-from-equilibrium initial conditions without
fine-tuning [14–19], our analysis reveals the presence of
both stable and unstable perturbations around the scaling
solution. The unstable modes lead to quasiexponential
deviations from the fixed point in the infrared. This is
exemplified in Fig. 1, where the time evolution

FIG. 1. Statistical function Fðt; t; jpjÞ for two different values
of the momentum jpj as a function of time. Shown are the
unperturbed scaling solutions (solid bold lines) and the responses
after a perturbation δFðti; ti; jpjÞ at time tiQ ¼ 1800. We find that
perturbations grow (red) at sufficiently low momenta and
decay (blue) at higher momenta.
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of the statistical correlation function F (see below) for
two different, unstable (red) and stable (blue), momenta
is shown.
Our results are obtained from a systematic large-N

expansion to next-to-leading order, where N is the number
of components of the real field operator Φ̂a¼1;…Nðt;xÞ as a
function of time t and space x or, respectively, spatial
Fourier momentum p. The full unitary quantum dynamics
of correlation functions at this order is obtained numeri-
cally. We uncover the underlying physical processes using
a linear response analysis around the time-evolving scaling
solution and explain the observations of attractive behavior
at fixed momenta in the presence of both negative and
positive stability exponents.
Far-from-equilibrium quantum fields.—We consider

a relativistic quantum field theory described by the
OðNÞ-symmetric Hamilton operator

ĤðtÞ ¼
Z

d3x

�
1

2
Π̂2

aðt;xÞ þ
1

2
ð∇xΦ̂aðt;xÞÞ2

þ λ

4!N
ðΦ̂aðt;xÞΦ̂aðt;xÞÞ2

�
; ð1Þ

with Π̂aðt;xÞ ¼ ∂tΦ̂aðt;xÞ and a summation over repeated
indices is implied. While we specify values of the coupling
λ for the massless fields below, the detailed values of
these parameters do not enter universal quantities [15]. We
solve for the nonequilibrium dynamics employing a self-
consistent large-N expansion to next-to-leading order
[20,21]. Diagrammatically, this takes into account an
infinite series of quantum corrections, which is indicated
in Fig. 2 for the expectation value of the Hamiltonian. More
precisely, we solve the quantum evolution equations for the
connected correlation functions, i.e., the expectation value
of the anticommutator (statistical function)

Fabðt; t0;x − x0Þ ¼ 1

2
hfΦ̂aðt;xÞ; Φ̂bðt0;x0Þgi

− hΦ̂aðt;xÞihΦ̂bðt0;x0Þi ð2Þ
and of the commutator (spectral function)

ρabðt; t0;x − x0Þ ¼ ih½Φ̂aðt;xÞ; Φ̂bðt0;x0Þ�i ð3Þ
for spatially homogeneous and isotropic systems. The non-
equilibrium time evolution equations are derived from the
two-particle irreducible (2PI) effective action on the closed

time contour at next-to-leading order (NLO) in the
resummed large-N expansion. By virtue ofOðNÞ symmetry,
we consider hΦ̂aðt;xÞi ¼ 0, such that the correlators are
diagonal in field space with Fab ¼ δabF and ρab ¼ δabρ.
The spectral function is related to the retarded propagator

asGRðt; t0;xÞ ¼ θðt − t0Þρðt; t0;xÞ and encodes the bosonic
equal-time commutation relations ρðt; t0;xÞjt¼t0 ¼ 0,
∂tρðt; t0;xÞjt¼t0 ¼ δð3ÞðxÞ. While the latter determine also
ρ at some initial time t0, for F we consider the following
class of initial conditions in spatial Fourier space:

Fðt0; t0;pÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p

��
Nn0
λ

�
θðQ − jpjÞ þ 1

2

�
ð4Þ

in the limit m2 → 0þ. To start the evolution far from
equilibrium, we choose Nn0=λ ≫ 1 up to the momentum
scale Q determining the (conserved) energy density of the
system.
Perturbations around the universal scaling solution.—

The subsequent time evolution approaches self-similar
scaling behavior described by

Fðt; t; jpjÞ ¼ ðt=trefÞαFS½ðt=trefÞβjpj�; ð5Þ

corresponding to the solid lines exemplified in Fig. 1. The
scaling exponents are universal, as well as the form of the
scaling function FS depending on the single scaling
variable ðt=trefÞβjpj, with β ≃ 1=2, α ¼ dβ, and d ¼ 3 in
our case [15]. Here tref denotes some reference time, which
does not affect universal properties and is described below.
The approach to (5) has been studied starting from a wide

range of different initial conditions. Examples include para-
metric resonance initial conditions in a strong field regime
[8,22] or large initial occupation numbers similar to (4)
[14,15,17–19,23]. Corrections to the scaling exponents of the
high-momentum cascade were recently explored via kinetic
methods [24,25] in the context of the prescaling phenomenon
[26]. Furthermore, nonthermal fixed points were realized in
cold atom experiments, e.g., from sudden quenches across
phase transitions [9–11]. While universal quantities like
scaling exponents do not depend on microscopic details,
such as specific values of λ or n0, the time for the approach to
scaling is not a universal quantity. Moreover, scaling accord-
ing to (5) is a transient phenomenon in an isolated system,
with the system eventually approaching thermal equilibrium
[22]. The latter can always be delayed by increasing ðNn0Þ=λ
entering the initial condition (4) such that (5) is accurately
realized for suitable time ranges in units of Q.
For the numerical results presented in this Letter, we

employ λ ¼ 0.01, n0 ¼ 25, and N ¼ 4, which, e.g., reflects
the Higgs sector of the standard model of particle physics
[27]. Starting from the initial conditions we consider, the
universal scaling regime of interest emerges in the infrared
after times of order 103=Q and our scaling solution results

FIG. 2. Diagrammatic representation of the infinite series of
contributions to hĤðtÞi taken into account with the 2PI effective
action to NLO in the large-N expansion. Lines correspond to self-
consistently resummed propagators and circles to bare vertices.
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are in accordance with earlier studies of nonthermal fixed
points.
After the behavior (5) is established, we consider

perturbations around the scaling solution according to

Fðt; t; jpjÞ ¼ ðt=trefÞαFS½ðt=trefÞβjpj� þ δFðt; t; jpjÞ ð6Þ

by suddenly turning on δF > 0 at a given time ti.
Perturbations of two different momentum modes at
tiQ ¼ 1800 are depicted in Fig. 1. In the following, we
analyze the underlying processes that lead to the quasi-
exponential growth of perturbations in time at low values of
jpj and decay at higher momenta.
Far-from-equilibrium quasiparticles.—Since the univer-

sal exponent β is positive, the scaling behavior (5) describes
an inverse cascade toward low momenta during which a
macroscopically occupied zero-momentum mode emerges
[15]. We demonstrate in the following that this gives rise to
a tower of emergent quasiparticle excitations out of
equilibrium. The spectrum is encoded in the spectral
function ρ, which we access by a Wigner transform with
respect to relative time Δt ¼ t − t0. Expressed as a function
of the central time τ ¼ 1

2
ðtþ t0Þ, the spectral function is

obtained via (a factor of i is included for the Wigner
transformed ρ to ensure realness)

ρðτ;ω;jpjÞ¼−i
Z

2τ

−2τ
dΔteiωΔtρ

�
τþΔt

2
;τ−

Δt
2
; jpj

�
: ð7Þ

For notational simplicity, we write τ ¼ t in the following,
and theWigner transformed spectral function is shown in the

left graph of Fig. 3 for tQ ¼ 2400. One observes a pro-
nounced quasiparticle peak obeying a relativistic dispersion
relation ωðt;pÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2ðtÞ
p

with in-medium mass
MðtÞ. Its value is established quickly and approximately
constant in the scaling regime with M=Q ≃ 0.62 for the
parameters employed for Fig. 3. The associated widths scale
to zero in the scaling regime as time progresses, leading to
increasingly long-lived quasiparticles [18,19].
However, we also find additional quasiparticles to be

present. Their dispersion relations are well described by

ω�ðt;pÞ ¼ 2MðtÞ � ωðt;pÞ: ð8Þ

This multitude of excitations out of equilibrium may be
understood as phase fluctuations of a macroscopic zero
mode rotating in N-component field space [19], here built
up by the inverse cascade. Though the additional quasi-
particle modes at ω�ðt;pÞ exhibit a much lower magnitude
as compared to the pronounced peak at ωðt;pÞ, their
contributions play a leading role for the stability properties
of the system at sufficiently low momenta, as we show next.
Linear response around the universal scaling solution.—

To gain further analytical insights, we perform a linear
response analysis around the nonequilibrium scaling
solution, described by

∂tδFðt;ω; jpjÞ ¼ −γðt;ω; jpjÞδFðt;ω; jpjÞ: ð9Þ

Here γðt;ω; jpjÞ denotes the time-dependent response
rate for the frequency- and momentum-resolved (Wigner
transformed) perturbations of the statistical function.

FIG. 3. Left: frequency and momentum dependence of the nonequilibrium spectral function ρðt;ω; jpjÞ ¼ −ρðt;−ω; jpjÞ at
tQ ¼ 2400. Apart from the quasiparticle peak with relativistic dispersion relation, we find a tower of additional quasiparticle peaks.
Right: linear response rate γðt;ω; jpjÞ ¼ γðt;−ω; jpjÞ versus frequency and momentum at the same time. For low momenta, the on-shell
response rate at ω ≃M receives competing contributions from adjacent peaks and turns negative.
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This response rate for the far-from-equilibrium state is time
dependent, in contrast to conventional linear response
estimates around equilibrium solutions. The dynamics of
the perturbation

δFðt;ω; jpjÞ ¼ δFðti;ω; jpjÞ exp ½−Γðt;ω; jpjÞ� ð10Þ

is then determined by a rate integral Γ, with ∂tΓ ¼ γ.
We compute (9) from the quantum evolution equations at

NLO large N using linearization [29,30] and a lowest-order
gradient expansion [31,32]. The result for the nonequilibrium
response rate is displayed in the right graph of Fig. 3 for the
same time in the universal scaling regime as the spectral
function on the left. One observes very similar pronounced
structures, taking into account that the response rate is

symmetric in frequency with γðt;ω; jpjÞ ¼ γðt;−ω; jpjÞ
rather than antisymmetric as the spectral function.
Remarkably, for small momenta, the negative regions (red)
aroundω ≃�M exhibit the largest values of jγj. This has the
striking consequence that in the infrared the dominant on-
shell rate γðt;ω ≃M; jpj ≃ 0Þ turns negative. According to
(9) or (10), respectively, this gives rise to growing (unstable)
perturbations around the universal scaling solution.
The linear response results for the on-shell rate can be

compared to the time evolution of perturbations δFðt; t; jpjÞ
obtained from the solution of the full quantum evolution
equations at NLO large N. This is shown for various
momenta in Fig. 4, after an initial “kick” δFðti; ti; jpjÞ ¼
10−3ðti=trefÞαFS½ðti=trefÞβjpj� at tiQ ¼ 1800. For the com-
parison, the initial perturbation δFðti; ti; jpjÞ was fitted as a
momentum-dependent constant. One observes that the
quasiexponential growth or decay of the envelopes of
oscillations in time is rather well captured by linear
response, where the error band indicates a residual mild
dependence on the infrared cutoff for the low momenta
considered. The rapid oscillation timescale of the full
solution is set by the quasiparticle mass MðtÞ, which is
not captured by the linear response analysis employing also
a gradient expansion in time. We note that for small enough
δF also from the full evolution dynamics an approximately
linearly independent evolution of the different modes by
considering also separately excited modes is observed,
which corroborates a linear response approach.
The linear response analysis also allows us to uncover

the underlying dynamical scattering processes of the
various quasiparticles. This is conveniently described by
introducing the (off-shell) distribution function fpðtÞ with
four-momentum p ¼ ðp0;pÞ according to

Fðt; pÞ ¼
�
fpðtÞ þ

1

2

�
ρðt; pÞ: ð11Þ

The leading contribution to the on-shell linear response
results arises from elastic (“two-to-two”) scatterings
described by

γ2↔2ðt; pÞ ¼ −
λ2

36Np0

Z
d3q
ð2πÞ3

d3l
ð2πÞ3

d3r
ð2πÞ3 ð2πÞ

4

Z
∞

0

dq0dl0dr0

ð2πÞ3 δð4Þðpþ l − q − rÞρðt; qÞρðt; lÞρðt; rÞ

× ½veffðt; pþ lÞ þ veffðt; p − qÞ þ veffðt; p − rÞ�f½flðtÞ þ 1�fqðtÞfrðtÞ − flðtÞ½fqðtÞ þ 1�½frðtÞ þ 1�g: ð12Þ

Here the effective vertex

veffðt; pÞ ¼
����1þ λ

3

Z
d4k
ð2πÞ4 Fðt; p − kÞGRðt; kÞ

����
−2

ð13Þ

resums the infinitely many s-channel scatterings taken
into account at NLO in the large-N expansion depicted
in Fig. 2 [32,33].

The on-shell response rate γ2↔2ðt; p0 ≃M; jpj ≃ 0Þ in
the infrared exhibits two competing contributions of
comparable magnitude: a positive (stable) contribution
γ2↔2þ ðt;pÞ¼ γ2↔2ðt;p0¼ωðt;pÞ;pÞ and a negative (unsta-
ble) contribution γ2↔2

− ðt;pÞ¼ γ2↔2ðt;p0¼ω−ðt;pÞ;pÞ,
which are respectively denoted in the right graph
of Fig. 3. The latter dominates in the scaling regime at

FIG. 4. The perturbation δFðt; t; jpjÞ around the universal
scaling solution as a function of time for different momenta.
The growth and decay of the envelopes for the oscillatory full
solution of the quantum evolution equations is rather well
described by the linear response result.
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jpj ¼ 0 for which ωðt;p ¼ 0Þ ¼ ω−ðt;p ¼ 0Þ ¼ MðtÞ.
These competing processes can be related to elastic scatter-
ings, where p0 þ ωðt; lÞ ¼ ωðt;qÞ þ ωðt; rÞ, with contri-
butions at p0¼ωðt;pÞ and additionally at p0 ¼ ω−ðt;pÞ.
The latter can be associated with the production of particles
with massM at rest and thereby contribute to the buildup of
the macroscopic zero mode.
We observe that the emergence of the competing con-

tributions in this strongly correlated system hinges on the
combination of a gapped dispersion relation and a steep
power-law behavior of the distribution function for char-
acteristic infrared momenta fðt;pÞ ∼ jpj−κ for κ ≳ 2. In our
case κ ≃ 5 and, in particular, the phenomenon is absent in
thermal equilibrium [29,30,34].
Universal scaling of perturbations.—Since the linear

response analysis describes the dynamics of perturbations
in terms of the universal scaling solution itself, the response
rate γ and the respective rate integral Γ can exhibit scaling.
For the on-shell rate integral, we find

Γðt; jpjÞ ¼ ðt=trefÞΓS½ðt=trefÞβjpj�; ð14Þ

with scaling function

ΓS½ðt=trefÞβjpj� ¼ Aðt=trefÞβjpj=Q − B; ð15Þ

corresponding to an on-shell response rate given
by γðt; jpjÞ ¼ ðβ þ 1ÞðA=trefÞðt=trefÞβjpj=Q − B=tref.
One observes that the overall scaling exponent of time in

(14) is unity, which follows analytically from a scaling
analysis of (12) and (13). Similarly, it follows that scaling
functions do not depend on time and momentum separately,
but only on the product tβjpj with universal exponent β.
We confirm these results by analyzing also the numerical

solution of the full evolution equations at NLO large
N in Fig. 5 [35]. While the main graph shows the
unrescaled data, the inset demonstrates that the rescaled
results all collapse to a single scaling function to very good
accuracy.
The form of the scaling function (15) is universal up to an

overall constant factor and normalization of the argument,
which we subsume into the constants A and B. Their
magnitudes, as well as the universal linear dependence of
ΓS on tβjpj, are obtained numerically via a fit of (15) to the
rescaled rate integral, as displayed by the dashed black line in
the inset of Fig. 5. We choose ti ¼ tref and for t ≫ ti we find
that A=ðQtrefÞβþ1¼ð1.10�0.01Þ×10−3 and B=ðQtrefÞ¼
ð1.41�0.05Þ×10−3 become independent of the choice of
tref in units ofQ, with fit errors indicated.While the values of
A and B depend on the chosen microscopic parameters, such
as coupling and initial conditions, the amplitude ratio
A=Bβþ1 ¼ 20.8� 1.2 is universal.
From (15) we find that for small enough momenta the

negative contributions ∼Bt to the rate integral Γ always
dominate. However, for given momentum jpj and as time
progresses the positive (stable) term ∼Atβþ1jpj will even-
tually outgrow the negative (unstable) contribution for all
nonzero momenta in the scaling regime.
Conclusion.—Our results establish the stability properties

of a nonthermal fixed point from first principles by solving
for the dynamics of perturbations around it. The perturba-
tions turn out to be captured well by a time- andmomentum-
dependent response rate γ. Our results demonstrate that γ
exhibits universal properties and we determine the dynami-
cal exponents, amplitude ratios, and scaling functions. We
discover the phenomenon of a scaling instability. While the
low-momentum response rate is negative leading to unstable
perturbations and higher momenta are stable, γ is a self-
similar scaling function of ∼tβjpj. As a consequence, the
system shows attractor behavior after t ∼ 1=jpj1=β for any
nonvanishing momentum jpj. Since for a system with linear
size L the smallest resolved momentum is ∼1=L, measure-
ments in finite systems will always detect attractor proper-
ties at late enough times.
Since the considered universal scaling is known to be

present in a wide range of quantum and classical-statistical
relativistic as well as nonrelativistic many-body systems,
our results provide an important ab initio example of the
emergence of attractor properties in dynamical scaling
phenomena. Moreover, the example shows that such
“self-organized” scaling, in which complexity emerges in
a robust way that requires no particular fine-tuning, can be
realized in the presence of both stable and unstable
directions for the dynamics. This opens new perspectives
on the underlying mechanisms and scope of models that
have a critical point as an attractor. Moreover, present-day
experimental platforms with ultracold quantum gases in the
many-body regime can give direct access to these intriguing
far-from-equilibrium phenomena.

FIG. 5. Rate integral as a function of momentum for different
times. The inset shows the same data but rescaled, such that all
curves at different times collapse to a single scaling function,
which is well described by (15) as displayed by the dashed black
line in the inset.
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