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Entangling gates are an essential component of quantum computers. However, generating high-fidelity
gates, in a scalable manner, remains a major challenge in all quantum information processing platforms.
Accordingly, improving the fidelity and robustness of these gates has been a research focus in recent years.
In trapped ions quantum computers, entangling gates are performed by driving the normal modes of motion
of the ion chain, generating a spin-dependent force. Even though there has been significant progress in
increasing the robustness and modularity of these gates, they are still sensitive to noise in the intensity of the
driving field. Here we supplement the conventional spin-dependent displacement with spin-dependent
squeezing, which creates a new interaction, that enables a gate that is robust to deviations in the amplitude
of the driving field. We solve the general Hamiltonian and engineer its spectrum analytically. We also
endow our gate with other, more conventional, robustness properties, making it resilient to many practical
sources of noise and inaccuracies.
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Two-qubit entanglement gates are a crucial component
of quantum computing, as they are an essential part of a
universal gate set. Moreover, fault-tolerant quantum com-
puting requires gates with fidelities above the fault-toler-
ance threshold [1]. Generating high-fidelity two-qubit gates
in a robust and scalable manner remains an open challenge,
and a research focus, in all current quantum computing
platforms [2–4].
Trapped ions based quantum computers are a leading

quantum computation platform, due to their high
controllability, long coherence times, and all-to-all qubit
connectivity [5–7]. Entanglement gates are typically
generated by driving the ions with electromagnetic fields
that create phonon mediated qubit-qubit interactions.
Such gates have been demonstrated, with outstanding
fidelities [8–11]. Moreover, in recent years there have
been many theoretical proposals and experimental dem-
onstrations [12–43] aimed at improving the fidelity, rate,
connectability, and resilience of such gates. These
schemes are largely based on generating spin-dependent
displacement forces on the ions which, depending on
realization, are linear or quadratic in the driving field.
These result in gates which are sensitive to the field
amplitude and exhibit a degradation of fidelity which is
linear in field intensity noise. A widely used scheme for
which is the Mølmer-Sørensen (MS) gate [44,45]. Driving
field amplitude deviations arise naturally in trapped ions
systems and may come about due to intensity noise in the
drive source, as well as beam pointing noise and polari-
zation noise [46,47].
Here we propose a gate scheme which is resilient to

deviations in the driving field’s amplitude. We combine the

conventional spin-dependent displacement with spin-
dependent squeezing, by driving the first and second
motional sidebands of the ion crystal normal modes. We
solve the resulting interaction analytically and formulate
constraints on the drive which generate a resilient gate.
Crucially, most constraints can be easily satisfied without
any numerical optimization. We combine other well-known
robustness methods, resulting in a two-qubit entanglement
gate which is resilient to many experimental parameters and
is independent of the initial motional state, within the
Lamb-Dicke regime. Our gates may be implemented using
conventional waveform spectral shaping which is straight-
forward to implement and is common to trapped ions
systems. Our method is compatible to laser driven gates as
well as laser-free entangling gates [11].
While we make use of the combination of spin-dependent

displacement and spin-dependent squeezing for increasing
the gate robustness, our derivations promote the utilization of
this combination to other aspects of trapped ions quantum
computing as well, such as improved fidelity, programm-
ability, and gate rate.
Figure 1 showcases our main results, with the fidelity

(left) of our gate (blue line) and the conventional MS gate
(red line), in the presence of deviations in the field’s Rabi
frequency δΩ. As seen, our gate shows a robust response
which scales as δΩ4, and exhibits a high-fidelity entangling
operation even with 10% Rabi frqeuency errors. This is
contrasted by the quadratic error of a MS gate. The
population dynamics of the initial state j00i are shown
(right) for the ideal, δΩ ¼ 0, case (solid lines) and in the
presence of a deviation, with δΩ=Ω ¼ 0.05 (dashed lines).
While the two cases exhibit different dynamics, at the gate
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time t ¼ T they both converge and result in a high-fidelity
Bell state (green lines).
Utilizing spin-dependent squeezing for entangling gates

has been suggested in other contexts, such as in order to
generate gates in the strong-coupling regime [33], or in
order to generate three-body [48] and n-body [49] inter-
action terms.
Below we present the Hamiltonian of interest, its

solution, the formulation of constraints, and their resolution
using spectral shaping. Finally, we analyze our gate’s
performance and feasibility.
We start with the noninteracting Hamiltonian of two

trapped ions, given by (ℏ ¼ 1),

H0 ¼ ω0Jz þ νa†a; ð1Þ

with ω0 the single ion separation frequency of the relevant
qubit levels, Jz ¼ ðσz1 þ σz2Þ=2 the global Pauli-z operator
such that σzn is the z-Pauli operator acting on the nth ion,
and ν the frequency of a normal mode of motion of the ion
chain, equally coupled to the two ions, and its phonon
creation operator a†. All other modes of motion are
assumed to be decoupled from the ion’s evolution, yet
this assumption can be relaxed [27]. The Hamiltonian in
Eq. (1) can trivially be used in a larger ion chain, by
assuming only two ions are illuminated [41,50].
Without loss of generality and for concreteness we

assume the ion qubit levels are coupled by a direct optical
transition. The ions are driven by a multitone global laser
field with a spectral content in the vicinity of the first and

second motional sidebands. This yields the interaction
Hamiltonian,

VI ¼ Jx½w1ðtÞa† þ iw2ðtÞða†Þ2� þ H:c:; ð2Þ

with wnðtÞ ¼
P

m ρn;meiδn;mt. Here ρn;m and δn;m are ampli-
tudes and frequencies determined below. Equation (2) is
obtained in a frame rotating with respect to H0, and
by driving the ion chain with the global time-dependent
drive,

WðtÞ ¼ −
4

η
sin ðω0tÞ

X
m

ρ1;m cos½ðν − δ1;mÞt�

−
8

η2
cos ðω0tÞ

X
m

ρ2;m sin½ð2ν − δ2;mÞt�; ð3Þ

with η the Lamb-Dicke parameter, quantifying the coupling
between qubit and motional states [51]. The structure of
Eq. (3) implies that the wn’s are proportional to Ω, the
driving field’s Rabi frequency. The resulting interaction in
Eq. (2) is valid in terms of a rotating wave approximation
(RWA) in Ω=ω0 and a second order expansion in η.
Furthermore, we make use of a RWA in Ω=ν allowing
us to omit off-resonance carrier coupling terms and
counterrotating terms. Below we incorporate methods that
eliminate carrier coupling terms even further [18]. We
note that counterrotating terms still allow for an analytic
solution [27], but are omitted here in favor of a more
concise presentation. Note that the wnðtÞ’s can be arbitrary
complex time-dependent functions.
For the oscillator, the Hamiltonian in Eq. (2) generates

both a spin-dependent displacing term, modulated by w1,
and a spin-dependent squeezing term, modulated by w2. In
the special case of w2 ¼ 0 the interaction VI reduces to the
MS Hamiltonian and is exactly solvable. We show below
that we may still solve it for nonvanishing second sideband
modulations.
There exists a known solution to general time-dependent

quantum harmonic oscillators [52]. However, here the
appearance of spin dependence requires special care.
We move to a frame rotating with respect to a spin-
dependent squeezing by applying a unitary transfor-
mation, SðJxrÞ ¼ expfðJxr=2Þ½a2 − ða†Þ2�g, with the
time-dependent parameter rðtÞ, for which we assume
rðt ¼ 0Þ ¼ 0. This transforms VI to VS ¼ S†VIS− iS†∂tS
(see the Supplemental Material [53]). Choosing w2 ∈ R,
i.e., the spectrum of w2 is symmetric around the second
sideband, the term in VS that is proportional to Jxa2 is

VðJxa2Þ
S ¼ −iJxa2

�
w2 þ

1

2
∂tr

�
: ð4Þ

To simplify VS we are interested in eliminating this term.
This yields the trivial differential constraint, ∂tr ¼ −2w2.

FIG. 1. Robust gate performance. Left: fidelity of our robust
gate (blue lines) and the conventional MS gate (red lines), in
presence of a deviation of the laser’s Rabi frequency δΩ. Our gate
shows a flat response, that scales as δΩ4, yielding a high-fidelity
operation even in the presence of 10% errors. The MS gate
exhibits a quadratic response and a fast deterioration in fidelity.
The inset shows the infidelity, 1 − F, in log scale. Our method
typically provides more than 2 orders of magnitude of improve-
ment throughout the 10% error range. Right: population dyna-
mics of the initial state j00i, for an ideal case (solid lines) and an
erroneous case, with a 5% Rabi frequency error (dashed lines). In
both cases a high-fidelity operation (green lines) is generated at
the gate time t ¼ T, indicated by an equal population of the j00i
(blue lines) and j11i (purple lines) states, while the j01i and j10i
populations (orange lines) vanish, indicating robustness to Rabi
frequency deviations.
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Together with the assumption above, rðt ¼ 0Þ ¼ 0, it is
solved by

r ¼ −2
Z

t

0

dt0w2ðt0Þ; ð5Þ

With these choices, we are left with

VS ¼ Jxa½w�
1 coshðJxrÞ − w1Jx sinhðJxrÞ� þ H:c: ð6Þ

Since VS in Eq. (6) is linear in the mode operators, it is
analytically solvable. Rotating back to the original frame,
the resulting unitary evolution operator due to VI is

UIðtÞ ¼ SðJxrÞDðJxαÞe−ifJ2x½Φ2ðtÞþΦ4ðtÞ�þJxΦ3ðtÞg: ð7Þ
On the spin side, the evolution in Eq. (7) is composed of a
global Jx rotation with angle Φ3, and the desired qubit
entangling operation, J2x with phase Φ2 þΦ4 (expressions
for all Φ’s are given below). On the oscillator side, it is
composed of spin-dependent squeezing S and spin-
dependent displacement D, with DðαÞ ¼ expðαa† − α�aÞ.
Adopting the useful conventions, ffg ¼ R

t
0 dt1fðt1Þ and

fffggg ¼ R
t
0 dt1

R t1
0 dt2fðt1Þgðt2Þ, introduced in Ref. [33],

α and the Φ’s are given by

α ¼ f−i½w1 coshðrÞ − Jxw�
1 sinhðrÞ�g; ð8Þ

Φ2 ¼ Im½fw�
1 coshðrÞfw1 coshðrÞgg�; ð9Þ

Φ3 ¼ Im½fw1 coshðrÞfw1 sinhðrÞgg�
þ Im½fw�

1 sinhðrÞfw�
1 coshðrÞgg�; ð10Þ

Φ4 ¼ Im½fw1 sinhðrÞfw�
1 sinhðrÞgg�: ð11Þ

Before analyzing the results in full we note that for a
small w2, the leading order contribution to the entangling
phase is Φ2þΦ4¼ Im½fw�

1fw1ggþ4fw1fw2gfw�
1fw2ggg�,

such thatΦ2 scales as Ω2 andΦ4 asΩ4. This dependence is
different from that of the MS scheme and its generaliza-
tions, and provides the opportunity to mitigate deviations
in Ω.
Using Eq. (7) we formulate constraints for the generation

of two-qubit entangling gates, which are robust to devia-
tions in Ω, and then choose the proper w’s that will satisfy
these constraints. We first require that at the gate time t ¼ T
there will be no residual displacement or squeezing,
i.e., that rðTÞ ¼ αðTÞ ¼ 0, and no rotation of Jx, i.e.,
Φ3ðTÞ ¼ 0. Explicitly, this requires

fw1 coshðrÞg ¼ 0; ð12Þ
fw�

1 sinhðrÞg ¼ 0; ð13Þ
rðt ¼ TÞ ¼ fw2g ¼ 0; ð14Þ

Φ3ðTÞ ¼ 0: ð15Þ

Crucially, Eqs. (12) and (13) are required to render the gate
operation independent of the initial state of the motional
mode, i.e., independent of temperature.
Next, without loss of generality we choose the entan-

glement phase to be φ ¼ −π=2, a value that rotates the
computational basis to fully entangled states:

Φ2ðTÞ þΦ4ðTÞ ¼ φ ¼ −π=2: ð16Þ

Then, robustness to errors in Ω is provided by

∂Ω½Φ2ðTÞ þΦ4ðTÞ� ¼ 0: ð17Þ

That is, we assume a small error, Ω → Ωþ δΩ, and
eliminate the leading order contribution of this error to
the entanglement phase. This can be generalized to next
order terms. In principle, similar constraints are required
also for other quantities, e.g., residual displacement.
However, we show below that these are unnecessary and
fulfilled by construction.
Our compiled list of six constraints does not uniquely

define the drives w1, w2. We analyze these constraints in
terms of frequencies. All the constraints are expressed as
integrals from t ¼ 0 to t ¼ T. For these integrals to vanish,
the integrands must be composed of nonzero multiples of
the gate rate ξ ¼ 2π=T. The choice,

w1ðtÞ¼
X
n

a2nþ1eiξð2nþ1Þt; rðtÞ¼
X
n

s2nsinð2ξntÞ; ð18Þ

in which w1 is made of odd harmonics of the gate rate and r
of a sine series of even harmonics, guarantees that products
of the form w1 coshðrÞ and w1 sinhðrÞ will not have
components at zero frequency, and will therefore integrate
to zero. This choice guarantees, then, compatibility with the
constraints (12)–(14). Furthermore, the choice to expand r
in a sine series (and not cosine) satisfies Eq. (15) (see the
Supplemental Material [53]). These considerations are
independent of Ω and are therefore resilient to deviations
of it.
We are left with two constraints, Eq. (16), which sets the

entangling phase, and Eq. (17), which makes it robust to
deviation in Ω. Appropriately, these are satisfied with two
degrees of freedom. There are infinitely many solutions to
these constraints. The simplest uses a3 and s2 (setting all
other to zero). This minimal gate scheme is presented in the
Supplemental Material [53].
We employ a more elaborate solution, making use of a3,

a5, a7, s2, and s4, in order to combine this new result with
previously demonstrated robustness properties: mitigation
of unwanted off-resonant carrier and sideband couplings,
robustness to deviations in the gate time, resilience to
phonon mode heating, and robustness to motional mode
errors [14,18,23]. These all correspond to constraints which
are linear in the an’s and sn’s and are straightforward to
implement (see the Supplemental Material [53]). Yielding,
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w1ðtÞ ¼
a
3
ð3e3iξt − 10e5iξt þ 7e7iξtÞ; ð19Þ

rðtÞ ¼ s

�
sinð2ξtÞ − 1

2
sinð4ξtÞ

�
: ð20Þ

Thus we still have only two undetermined degrees of
freedom, a and s, required to satisfy Eqs. (16) and (17).
We Taylor expand the hyperbolic functions in these
constraints, yielding quadratic equations for a and s, which
are solved analytically. We then optimize these solutions
numerically with a straightforward gradient descent.
This yields a ¼ 0.3608ξ and s ¼ 0.7820, which consti-
tutes a 3% correction to the analytical solution (see the
Supplemental Material [53]).
The resulting spectrum is presented in Fig. 2 (top)

showing the spectral components modulating the first
(blue) and second (green) sidebands. The amplitude of
the spectrum is normalized by the Lamb-Dicke parameter
to the power of the sideband order; i.e., the second sideband
modulation is η−1 times stronger than the first sideband
modulation. The corresponding time-domain modulation
of the sidebands due to our drive is shown in Fig. 2
(bottom). We note that both modulations continuously
vanish at the start and the end of the gate, which acts to
reduce off-resonance coupling to unwanted transitions [12].
The second sideband drive is significant and cannot be
naively treated perturbatively [33].
The Rabi frequency Ω required by our scheme is

Ωrobust=ΩMS ≈ 4.8þ 6.4=η, with ΩMS the Rabi frequency
required for a MS gate. Our gate is more demanding than

the MS requirements, showing that robustness is afforded at
the price of additional drive power. In a typical case of two
ions with a Lamb-Dicke parameter η ¼ 0.144, a gate time
of 10 μs requires total laser power of 0.8 mW in the usual
MS gate and 40 mW for our fully robust gate (see the
Supplemental Material [53]).
The Lamb-Dicke parameter η scales as N−1=2, with

N the number of ions in the chain. Therefore the ratio
Ωrobust=ΩMS scales, in leading order, as

ffiffiffiffi
N

p
. This implies

that our method is better suited to trapped ion quantum
computers where only the entangled ions are effectively
trapped together, such as the quantum charge-coupled
device [6,55], which has recently demonstrated remarkable
results [56], or ion traps incorporating optical tweezers for
mode shaping [57,58].
Nevertheless, the power requirements may be too strin-

gent for some implementations, while the attained robust-
ness can exceed the actual expected noise level. We
mitigate this by allowing “tunability” of the robustness.
Specifically, we relax constraint Eq. (17), and instead
impose a constraint directly on the value of Φ4 [still
satisfying Eqs. (12)–(16)]. In leading order the fidelity
of the tuned gate is

F ≈ 1 −
π2

4

�
1 −

Φ4

2.24

�
δΩ2 þOðδΩ4;Φ2

4Þ; ð21Þ

showing that the leading order contribution of δΩ can be
completely eliminated by Φ4, but also tuned arbitrarily.
Accordingly, the tunable gate Rabi frequency now scales as

Ωtunable=ΩΦ4¼0 ≈ 1þ 1.5
ffiffiffiffiffiffi
Φ4

p
=ηþOðη;Φ4Þ; ð22Þ

with ΩΦ4¼0 the Rabi frequency for a gate tuned to
Φ4 ¼ 0; i.e., it is not robust to deviations in Ω. Thus the
gate’s robustness to deviation in driving field amplitude

FIG. 2. Spectrum and resulting modulation used to generate our
robust gate. Top: spectrum of the first (blue) and second (green)
sidebands. The amplitude is given in units of ξ=ηn, with n the
sideband order. Bottom: resulting time-domain modulation of the
first (blue line) and second (green line) sidebands. Both modu-
lations vanish continuously at t ¼ 0 and t ¼ T, thus mitigating
off-resonance coupling to unwanted transitions.

FIG. 3. Motion in phase space. Left: phase-space displacements
of the jþþi state, with color corresponding to evolution time t=T
and j−−i state (dashed lines). The two trajectories are related by a
reflection through the p ¼ 0 axis and time reversal. Right:
standard deviation of position Δx ¼ expðrÞ=2 (solid line) and
momentum Δp ¼ exp ð−rÞ=2 (dashed line) for the jþþi state,
revealing oscillations of squeezing and antisqueezing in both
quadratures. These are the same for momentum (solid line) and
position (dashed line) in the j−−i state, respectively.
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may be tuned such that it matches the expected noise while
optimizing the required laser power (see the Supplemental
Material [53]).
The phase-space trajectories generated by our scheme

are deduced by the squeezing SðJxrÞ and displacement
DðJxαÞ operators in Eq. (7). Because of the appearance of
Jx in D and S, the states jþþi and j−−i follow different
phase-space trajectories. This also occurs in the MS gate,
however here we also have Jx operators in α, hence the
trajectories are not simply reflected about the origin, as in
the MS case.
The phase-space displacement of jþþi is presented in

Fig. 3 (left, solid lines). The same evolution is shown for
j−−i (dashed line). The trajectories are reflected through the
p ¼ 0 axis and time reversed. Using rðT − tÞ ¼ rðtÞ and
w1ðT − tÞ ¼ w�

1ðtÞ, this is readily confirmed. Squeezing by
r changes the expectation value error of position and
momentum, Δx and Δp, to er=2 and e−r=2, respectively.
The figure also shows the standard deviations (right) of x
(solid line) and p (dashed line) for the jþþi state. Since r is
real, the presented displacement and standard deviations
completely define the phase-space motion.
The form of the evolution operator in Eq. (7), together

with known phase-space identities [59], allows us to
calculate the gate fidelity. Specifically, we calculate the
overlap of the state generated by our gatewith the ideal case,
assuming the initial state is j00i, at themotional ground state
(see the Supplemental Material [53]). This is used to
calculate the gate fidelity in the presence of Rabi frequency
deviations δΩ shown in Fig. 1 (left) and in Eq. (21).
Moreover, the form of the drive in Eq. (20) ensures that

our gate is robust to additional errors and noise. Indeed,
Fig. 4 shows our gate fidelity in the presence of gate time
deviations δT (left) and motional mode frequency errors δν
(right). For both of these errors our gate exhibits high
fidelity (blue lines) which scales favorably compared to the
MS gate (red lines).
In conclusion, we have used spin-dependent squeezing

in order to propose a two-qubit entangling gate for trapped
ions qubits, which is resilient to deviations in the driving

field intensity. We do so by generating constraints, which
can then be satisfied, with spectral consideration in an
analytic fashion. Our new gate can be readily incorporated
in the trapped ion quantum toolbox. Furthermore, our
methods open the door to further development of useful
aspects of spin-dependent squeezing.
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