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Many experimentally relevant systems are quasi-one-dimensional, consisting of nearly decoupled
chains. In these systems, there is a natural separation of scales between the strong intrachain interactions
and the weak interchain coupling. When the intrachain interactions are integrable, weak interchain
couplings play a crucial part in thermalizing the system. Here, we develop a Boltzmann-equation formalism
involving a collision integral that is asymptotically exact for any interacting integrable system, and apply it
to develop a quantitative theory of relaxation in coupled Bose gases in the experimentally relevant
Newton’s cradle setup. We find that relaxation involves a broad spectrum of timescales. We provide
evidence that the Markov process governing relaxation at late times is gapless; thus, the approach to
equilibrium is generally nonexponential, even for spatially uniform perturbations.
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The dynamics of thermalization—the approach to equi-
librium of a quantum system initialized far from equilib-
rium—is a central theme in contemporary many-body
physics [1]. This dynamics is particularly rich in one
dimension, since many paradigmatic models, such as the
Hubbard, Heisenberg, and Lieb-Liniger models, are inte-
grable [2]. Integrable models do not thermalize in the
conventional sense, since they have extensively many local
conserved densities; rather, they approach generalized
Gibbs ensembles [3–5] that can have strikingly different
properties (e.g., persistent charge and heat currents) from
the standard Gibbs ensemble. Realistic experiments, espe-
cially in solid-state systems such as spin chains, never
involve perfectly one-dimensional systems; the typical
situation is that of a quasi-one-dimensional geometry of
weakly coupled chains. One does not expect the system of
coupled chains to be integrable; nevertheless, quasi-
one-dimensional systems can feature a wide separation
of scales between the intrachain interactions—which
generate the short-time dynamics—and the interchain
interactions, which break integrability and thermalize
the system. When this separation of scales is well devel-
oped (as in cold atoms [6,7], as well as solid-state magnets
[8]), the short-time dynamics is that of the integrable
system, and at late times one sees a crossover to thermal-
ization driven by the interchain couplings.
In the present Letter we address thermalization in such

weakly coupled interacting integrable chains, initialized in
arbitrary (but spatially uniform) nonequilibrium states. In
this sense our approach is complementary to the generalized
hydrodynamics program, which focuses on the relaxation of
initially nonuniform states [9–16]. We study the dynamics

of thermalization via the time evolution of the quasiparticle
rapidity distribution, which is experimentally measurable
through time-of-flight experiments [17]. The rapidity dis-
tribution evolves according to a Boltzmann equation, with a
collision integral for which we develop an efficient, quanti-
tatively accurate computational scheme. Finding such
explicit collision integrals has been one of the persistent
challenges in the study of nearly integrable models: collision
integrals that are similar to the onewe derive were previously
proposed in the literature [18–25], but have not been used to
study relaxation from physically relevant nonequilibrium
initial states. (For complementary approaches to the problem
of weak integrability breaking see Refs. [26–32].) Here, we
apply our collision integral to characterize the relaxation of
coupled Bose gases initialized in the experimentally relevant
“Newton’s cradle” setup [33] (Fig. 1). In an (idealized)
Newton’s cradle experiment, a gas is prepared in a low-
temperature equilibrium state, and is then subjected to a
pulse that boosts the momenta of half the atoms by p and the
other half by −p. When the dynamics is not exactly
integrable [6], this nonequilibrium state slowly relaxes to
a higher-temperature equilibrium state [Fig. 1(b)].
Our main result is a quantitative description of how the

quasiparticle distribution evolves during this relaxation
process. From the quasiparticle distribution, we can also
straightforwardly compute the evolution of charge and
energy currents, and of the entire hierarchy of charges that
are strictly conserved in the integrable limit [4,34]. For the
far-from-equilibrium initial state we focus on, this relaxation
is a complex multiple-scale process that we can only solve
numerically. However, assuming the system thermalizes,
then at late times it is near equilibrium, and one can linearize
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the Boltzmann equation. We present evidence that the
spectrum of the resulting linear operator is gapless and
spans several orders of magnitude. The late-time approach
to equilibrium is thus not governed by a single characteristic
timescale. This is true, remarkably, even though the initial
state is spatially uniform, so the quench does not directly
couple to any hydrodynamic-scale density fluctuations.
Model.—We consider an array of one-dimensional

bosonic gases (“tubes”), oriented along the x axis, each
governed by the Lieb-Liniger Hamiltonian

HLL;i ¼
Z

dxψ̂†
i ðxÞ

�
−

1

2m
∂
2
x þ cρ̂iðxÞ

�
ψ̂ iðxÞ: ð1Þ

Here, i indexes the tubes, m is the microscopic mass of the
bosons, ρ̂iðxÞ≡ ψ̂†

i ðxÞψ̂ iðxÞ is the density operator, and c is
a coupling constant. The tubes are coupled to one another
by density-density interactions of the form

H0 ¼ V0

X
ij

Z
dxdx0Aijðjx − x0jÞρ̂iðxÞρ̂jðx0Þ: ð2Þ

We will leave Aijðjx − x0jÞ generic for now, but we are
primarily interested in the case of dipole-dipole interactions,
where Aij ¼ ½1 − 3 cos2ðθijÞ�=ðjx − x0j2 þ jri − rjj2Þ3=2.
Here, ri ≡ ðyi; ziÞ is the position of the ith tube in the
array, and θij is the angle between the separation ri − rj and
the orientation of the dipoles (which is fixed in the experi-
ment by applying a magnetic field).
For simplicity we anticipate that Aij falls off fast enough

with distance between tubes that it is sufficient to consider
nearest-neighbor interactions between tubes. Thus each tube
interacts with z neighbors. With the Newton’s cradle experi-
ment in mind, we also assume in what follows that the tubes
have identical quasiparticle distributions in the nonequili-
brium initial state. Under these assumptions, it suffices to

consider the effects of the integrability-breaking perturbation
acting on a pair of neighboring tubes; we thus drop the
indices on the interaction shape AðxÞ.
Boltzmann equation for two tubes.—We assume a sepa-

ration of scales between the fast dynamics due to HLL and
slow dynamics due toH0. Without loss of generality we pick
tube 1 as the “system” tube (whose rapidity distribution is
being measured) and tube 2 as a “bath” tube. On timescales
that are long compared with the fast dynamics, the state of
each tube can be characterized by a generalized Gibbs
ensemble [4,35,36], or equivalently by its quasiparticle
distribution function ρpðλÞ, where λ is the rapidity. The
rapidity labels particles in interacting integrable models in an
analogous way to momentum in free theories. The distri-
bution ρpðλÞ evolves in general as

∂tρp;1ðλÞ ¼ τ−1Q½ρp;1; ρp;2�ðλÞ: ð3Þ

We emphasize that the right-hand side (the so-called
“collision integral”) is a nontrivial functional of the density
distributions in the two tubes. For the present, we restrict to
the case where the density distributions are initially iden-
tical, and thus stay identical at all times (at our level of
analysis). The timescale for the evolution follows from
Fermi’s golden rule and is set by τ−1 ≡ 16EF=ðℏπ2Þ × γ2inter,
where EF is the Fermi energy of the single tube and γinter ≡
V0m=ðn1Dℏ2Þ is the dimensionless coupling between the
two tubes with n1D the one-dimensional density of the gas.
The full derivation of the collision integral, including the
case of different distributions in the two tubes, is presented
in the Supplemental Material, Sec. II [37]. Here we discuss
in detail the ingredients of the resulting expression.
The population at rapidity λ may change for two

reasons: either because a particle directly scatters into
or out of that rapidity, or indirectly due to interactions. (As
an example, in a finite system, changing the rapidity of
one particle alters the quantization condition for all the
others, via the Bethe equations.) In the thermodynamic
limit, this “backflow” effect can be taken into account
through the relationQ½ρp�ðλÞ ¼

R
dμR½ρp�ðλ; μÞQ0½ρp�ðμÞ,

where Q0 is the direct scattering rate given by Fermi’s
golden rule, and R is an integral operator (which is purely
a property of the integrable dynamics) that captures the
influence of this scattering process elsewhere in rapidity
space; see the Supplemental Material [37]. Henceforth we
will drop the ρp argument, noting that all quantities of
interest are functionals of the full distribution. A physical
choice of Q0 must conserve the particle number in each
tube, as well as total momentum and energy in the full
array. In our setup, since the tubes are identical, momen-
tum and energy will be also conserved on “average” (in a
temporal sense) in each tube.

(a)

(b)

FIG. 1. (a) Depiction of two tubes coupled by the perturbation
H0. The leading contribution to thermalization comes from
collisions among three quasiparticles, which rearranges the
rapidity distribution (sketched on the right side of the figure).
(b) Schematic for the evolution of the rapidity distribution under
the experimental protocol, which consists of a Bragg pulse
followed by thermalization.
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We now turn to computing Q0. We write Q0 ¼P
n;m Qðn;mÞ

0 , whereQðn;mÞ
0 is a scattering process involving

n particle-hole excitations in the system tube and m
particle-hole excitations in the bath tube. We can write
Qn;m

0 ðλÞ so that the focus is on the n particle-hole
excitations in the system tube. Let these be indexed by
fðpi; hiÞgni¼1. We want to consider all possible distinct
particle-hole combinations such that the rapidity λ is equal
to pi or hi for some i. The scattering event, fðpi; hiÞgni¼1,
will change the system tube’s energy-momentum by ðω; kÞ.
By energy-momentum conservation the m-particle-
hole process in the bath tube must change by ð−ω;−kÞ.

The ability of the bath tube to support such an excitation
complex is encoded in the spectral density of the bath tube,
a quantity we denote as Sm2 ðk;ωÞ. The scattering processes
in both tubes are governed by matrix elements of the
density operator (as the interaction between tubes is
density-density). We write the matrix element for the
system tube as Fρ1ðfpi; higmi¼1Þ ¼ hρpjρ̂1ðxÞjρp; fhig →
fpigi. The contribution of the particle-hole combination
fðpi; hiÞgni¼1 in the system tube toQn;m

0 is controlled by the
particle and hole densities, ρp1=ρh1 and so is proportional
to

Q
n
i¼1 ρp1

ðhiÞρh1ðpiÞ. Putting these features together
allows us to write Qn;m

0 as

Qðn;mÞ
0 ðλÞ ¼ n

ðn!Þ2
Z Yn

i¼1

ndpidhiδðλ − p1ÞA2ðkÞjFρ1ðfpi; higÞj2½ρp1ðhiÞρh1ðpiÞSm2 ð−k;−ωÞ − ðhi ↔ piÞ�: ð4Þ

We derive this form more concretely in the Supplemental
Material [37].
To make further progress with Eq. (4) we must evaluate

the m-particle-hole matrix elements Fρ and the m-particle-
hole contribution to the dynamic structure factor. In general,
processes with any ðn;mÞ contribute comparably to relax-
ation, and one must sum over these processes, which is
evidently intractable. However under the assumption that
the intertube interactions are varying smoothly with the
distance the relaxation is dominated by processes trans-
ferring small momenta. This implies that higher particle-
hole processes that involve higher powers of the momentum
transfer (see Appendix A) can be neglected. Another regime
dominated by few-particle processes is the c → ∞ (Tonks-
Girardeau) limit in which processes involving n particle
holes are suppressed by c−2n.
The simplest interaction process is governed by Qð1;1Þ

0 ,
i.e., by two-particle scattering. However, the kinematics of
one-dimensional two-body scattering is too restrictive to
lead to thermalization; indeed, if the distributions in the

two tubes are initially the same, Qð1;1Þ
0 has no nontrivial

dynamical effects. Thus, the leading processes that do

contribute are Qð1;2Þ
0 and Qð2;1Þ

0 : i.e., diffractive three-body
scattering processes involving two particles in one tube and
one in the other [38].
The scattering rates Qð1;2Þ

0 and Qð2;1Þ
0 can be evaluated in

the limit of small momentum transfer, using recently
developed expressions for the form factors Fρðp;hÞ and
Fρðp1; p2; h1; h2Þ above a generalized Gibbs state [39–45].
The dynamic structure factor can also be expressed in terms
of these same form factors by means of a spectral repre-
sentation [46]. One of the challenges in employing form
factors in computing the scattering rates and structure
factors is to make sense of the nonintegrable singularities
they introduce [47–49]. In order to tackle this problem we

use the Hadamard regularization [37], the method used
earlier in computing response functions at finite energy
density as well as in the context of diffusion in generalized
hydrodynamics (Refs. [43,45,50,51]).
Results.—We study now in detail the time evolution of

the system prepared in the following initial state motivated
by the recent experiments [6]. Initially, the two tubes are in
thermal equilibrium at temperature T0 and with the chemi-
cal potential h0. The corresponding quasiparticle distribu-
tion is ρT0;h0ðλÞ. We imagine now performing a Bragg pulse
effectively boosting each cloud of atoms by �p such that
ρpiðλ; 0Þ ¼ ½ρT0;h0ðλþ pÞ þ ρT0;h0ðλ − pÞ�=2. The system
then evolves according to Eq. (3). As discussed above, when
the distributions in both tubes are identical the leading
processes are (1,2) and (2,1). To be specific we fix the
interaction parameter c ¼ 4which corresponds to a strongly
correlated regime of the Lieb-Liniger model. For the initial
state we choose a system at kBT ¼ 1 and unit density
n1D ¼ 1 and set p ¼ 2.3. In Fig. 2 we show the resulting
time evolution, and in Fig. 3(a) we compare the initial
distribution and the distribution at late time. This clearly
shows the thermalization with the thermal distribution fixed
by the particle density and the energy right after the Bragg
pulse. Additionally the thermalization process can be
witnessed to be observing the diagonal entropy production
[52] as we discuss in more detail in the Supplemental
Material, Sec. S3 [37].
The instantaneous states of the system can be described

by the generalized Gibbs ensemble (GGE). The GGE
involves, besides particle number and total energy, all other
local conserved charges Qk present in the uncoupled Lieb-
Liniger model. The GGE density matrix then takes the form
ρ̂ ∼ expð−P

k βkQkÞ. The distribution ρpðλÞ is in one-to-
one correspondence with the chemical potentials βk (see
Appendix B). The dynamics of ρpðλÞ can then be translated
in the time dependence of the chemical potentials βkðtÞ.
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This is a convenient way to explore thermalization: in the
thermal state only β0 and β2 are not zero, so all other βnðtÞ
should decay to zero. The initial distribution is an even
function of the rapidity, and the time evolution does not
modify that, and therefore only even chemical potentials
are potentially nonzero. In Fig. 3(b) we plot the first few
chemical potentials. We observe that βkðtÞ for k > 2
approach zero at large times signalling again the thermal-
ization. In the inset we consider ½βkðtÞ − βthk � for large times
and normalized by the values at the specific time t ¼ 1.5 ×
104τ such that each line starts at 1. This shows that the system
does not display a single timescale for thermalization. Instead
the thermalization rate depends on the generalized chemical
potential considered with the one corresponding to the
particle number and energy evolving the slowest.
At very late times, we can assume the system is near a

thermal state, allowing us to linearize the Boltzmann
equation about the thermal state. The process of thermal-
ization is then determined by the spectrum of the resulting

linear operator Q0 [37]. This operator further decomposes

into contributions Qðn;mÞ
0 analogously to the full dynamics.

The two leading processes (1,2) and (2,1) lead then to a

symmetric operator Q̄ð1;2Þ
0 ¼ Qð1;2Þ

0 þQð2;1Þ
0 whose spec-

trum we now analyze.
The spectrum of this operator has three zero modes,

corresponding to energy, particle number, and momentum
conservation. The rate of approach to the steady state is set
by the smallest-magnitude nonzero eigenvalue. To learn
about its spectrum we truncate the infinite-dimensional
operator Q̄ð1;2Þ

0 to a finite-dimensional space spanned by
the lowest ultralocal conserved charges not contained in its
kernel. The spectrum of this truncated operator is plotted in
Fig. 3(c) as a function of the truncation order. We find that
the magnitude of the lowest nonzero eigenvalue rapidly
decreases with increasing truncation order. Our numerical
results suggest (though we cannot prove) that the operator is
gapless: thus, there is a spectrum of relaxation times going
all the way out to infinity, and the approach to the steady
state is nonexponential. This feature is unexpected: usually,
power-law relaxation in nonintegrable systems is associated
with the hydrodynamics of long-wavelength density fluc-
tuations, but the initial states we consider are translation
invariant and do not have such fluctuations. Understanding
the origin of this gapless spectrum—and whether it is
generic—is an interesting question for future work.
Summary.—In this Letter we addressed a central chal-

lenge in the study of nearly integrable systems: we
developed a Boltzmann equation with a microscopically
derived collision integral, to describe the relaxation of the
system to equilibrium. This Boltzmann equation is quanti-
tatively accurate for perturbations that fall off slowly in
space, e.g., dipolar interactions between integrable chains.
This Boltzmann equation applies to arbitrary initial states,

FIG. 3. (a) Initial, post Bragg pulse and final (at t ¼ 2 × 104τ) quasiparticle distributions. The final distribution coincides with the
thermal equilibrium distribution with kBT ≈ 11.25 fixed from the energy of the post Bragg-pulse state. (b) Evolution of the generalized
chemical potentials βkðtÞ determining the ensemble of the gas as a function of time. We consider truncated GGE of ultralocal charges
with the first four even charges. The dashed lines are the equilibrium values. In the inset we show that the thermalization rates

for different chemical potentials are different. (c) The eigenvalues of the dimensionless linearized and truncated evolution operator Q̄ð1;2Þ
0

for the thermal state approached by nonequilibrium evolution and for different values of the truncation order n. To simplify the

interpretation, while evaluating Q̄ð1;2Þ
0 , we work in the large c limit, where the dressings are subleading. All the eigenvalues are positive,

and the smallest and largest eigenvalues differ by a few orders of magnitude. The smallest value monotonically decreases upon
increasing the truncation order n and conjecturally approaches zero.

FIG. 2. Evolution of the quasiparticle distribution in one of the
tubes for the nonequilibrium protocol described in the main text.
The evolution is characterized by a quick washing out of the two
Bragg peaks followed by a relatively slower approach to the final
equilibrium distribution, as further shown in Fig. 3(a).
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though for simplicity we assumed translation invariance.
Our main result is that relaxation from the Newton’s cradle
setup is a process that involves many different timescales:
indeed, our numerical results on the linearized Boltzmann
equation suggest that relaxation is nonexponential even at
the latest times. An important future direction would be to
extend our results to spatially inhomogeneous initial states
and systems confined in harmonic traps: this would involve
combining our Boltzmann equation (applied locally) with
the nontrivial evolution of the quasiparticle distributions
under generalized hydrodynamics, including space-time
inhomogeneities [53]. In experimental setups the gas is
confined in a 3D trap. This leads to a new integrability-
breaking perturbation through virtual excitations into higher
radial modes [27]. In the case considered here where the
dynamics are dominated by low momenta particle-hole
excitations, virtual excitations involving higher radial modes
are suppressed by a high power of momentum [27] and so
presumably are subdominant. Nonetheless, it would be
valuable to understand the effects of such integrability
breaking on dynamics in more general scenarios. We are
also interested in applying the formalism developed herein
to the problem of thermalization in spin chain materials [8]
including rare earth variants [54–56] placed out of equilib-
rium and probed by neutron and resonant inelastic x-ray
scattering.

M. P. acknowledges the support from the National
Science Centre, Poland, under the SONATA Grant
No. 2018/31/D/ST3/03588. S. G. acknowledges support
from NSF DMR-1653271. R. M. K. was supported by the
U.S. Department of Energy, Office of Basic Energy
Sciences, under Contract No. DE-SC0012704.

Appendix A.—In this Appendix we analyze the
dependence of the scattering integral on the momentum k
transferred between the tubes. To this end, the integration
over ðpi; hiÞ in Eq. (4) can be transformed into an
integration over ðki;ωiÞ where

ki ¼ kðpiÞ − kðhiÞ; ωi ¼ ωðpiÞ − ωðhiÞ: ðA1Þ

The Jacobian of the transformation is

J−1 ¼
Yn
j¼1

k0ðpiÞk0ðhiÞjveffðpiÞ − veffðhiÞj: ðA2Þ

We assume that in the small momentum limit the
relevant excitations take the form of small particle-hole
excitations, pi ∼ hi. For small particle-hole excitations,
we have that J ∼

Q
n
i¼1 jkij−1. Therefore each integration

over ki and ωi, including the presence of the Jacobian,
gives a factor ki (we assume the energy is linear in ki).
The Dirac δ function reduces the number of integrals
by one and effectively decreases the order in k by 1.

Therefore, the phase space of the excitations scales
like kn−1.
We use now that the form factors are, in the leading

order, momentum independent and that for ω ∼ k,
Smðk;ωÞ ∼ jkjm−2 [45]. Finally, because ρp1ðhiÞρh1ðpiÞ−
ðhi ↔ piÞ ∼ k, there is an additional power of k coming
from the particle-hole distributions. Collecting all the

factors we find Qðn;mÞ
0 ∼ knþm−2.

Appendix B.—To read off the chemical potentials βk
from a given distribution ρpðλÞ we invert the usual
procedure of computing the distribution from the
knowledge of the chemical potentials [35]. In practice
we first compute ρtotðλÞ from the defining integral
equation [57],

ρtotðλÞ ¼
1

2π
þ
Z

dμTðλ− μÞρpðμÞ; TðλÞ ¼ c
π

1

λ2 þ c2
:

ðB1Þ

This gives us access to the filling function nðλÞ ¼
ρpðλÞ=ρtotðλÞ. The filling function is expressed through
the pseudoenergy ϵðλÞ as nðλÞ ¼ f1þ exp½ϵðλÞ�g−1. The
pseudoenergy itself is related to the bare pseudoenergy
ϵ0ðλÞ through the integral relation,

ϵðλÞ ¼ ϵ0ðλÞ −
Z

dμTðλ − μÞ log ð1þ e−ϵðμÞÞ: ðB2Þ

Finally, the bare pseudoenergy is expressed through
the chemical potentials as ϵ0ðλÞ ¼

P
k βkλ

k, where λk is
the single particle contribution to the charge Qk, namely

Qk ¼
Z

dλλkρpðλÞ: ðB3Þ
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