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Spontaneous Twisting of Achiral Hard Rod Nematics
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Since Onsager’s seminal work, hard rods have been taken as a prototype of nematic liquid crystals,

characterized by uniaxial order and a uniform director field as a ground state. Here, using Onsager theory to

calculate the free energy in the presence of arbitrary deformations, we find that hard rod nematics have an
intrinsic tendency to twist around their ordering axis (double twist), driven by a mechanism in which the
orientational fluctuations of particles play a key role. The anisotropic hard core potential used here is

arguably the simplest form of interaction able to originate spontaneous breaking of mirror symmetry in a
3D fluid. Our results are discussed in relation to the recent discovery of a double twisted ground state in
cylindrically confined lyotropic chromonic liquid crystals.
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Chirality is a hallmark of living systems, and explaining
the origin of homochirality is a fundamental question [1].
Besides its relevance in biology [2], understanding and
controlling the mechanisms that control the buildup of
chirality in matter also has practical implications, e.g., for
the rational design of materials for asymmetric catalysis
[3,4] and photonic [5,6] applications. Meso- and macro-
scopic chiral structures in condensed matter are generally
observed in systems endowed with chirality at the micro-
scopic level, but they can also emerge from the organi-
zation of achiral building blocks. This phenomenon,
denoted as spontaneous mirror symmetry breaking
(SMSB) spans the fields of crystals [7], colloids [8], gels
[9], supramolecular polymers [10], and liquid crystals
[11], and has generally been explained as the result of
the interplay of competing interparticle interactions and
boundary effects. A prominent example, ubiquitous in
polymer crystallization from melts, is the formation of
spherulites, characterized by a concerted twisting of
crystallographic orientation. The first detailed investiga-
tion on polyethylene, an achiral polymer simply made of a
sequence of identical methylene groups, dates to the mid-
1950s [12]. The emergence of chirality from achiral
elements in fluids was thought impossible, until in the
late 1990s a case was reported in smectic liquid crystals
made of bent molecules [13]. Then, in the last decade
achiral bent molecules were found to form the twist-bend
nematic phase [14-16], where the average molecular
orientation (the director 77) exhibits a heliconical modula-
tion with nanoscale pitch. Indeed liquid crystals, owing to
the combination of order and fluidity, have proven to be an
excellent playground to explore the relationship between
microscopic and higher level symmetries.

A challenging behavior was recently reported in lyo-
tropic chromonic liquid crystals (LCLCs), biocompatible
systems made of amphiphilic planklike molecules, which in
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water self-assemble into columnar aggregates that beyond a
certain density align along a common direction. LCLCs
were found to form chiral tactoids [17] and to take
double twisted director configurations under confinement
in cylindrical [18-20] or rectangular [21] capillaries and in
cylindrical shells [22] with degenerate planar boundary
conditions. This phenomenon was ascribed to unconven-
tional elastic properties. Using a recent reformulation [23],
which is convenient to our purpose, the deformation free
energy density [24,25] of achiral nematic liquid crystals can
be expressed as

1 1
Aat = E(Kn — K)S$? ) (Ky — Koy)T?
1
+ §K33Bz + K24TY(A2) (1)

where S=a(V-a), T=n-(Vxn), B=—@-V)i=
it x (V xit) represent the splay, twist, and bend mode,
respectively, and A is a fourth mode described by a second-
rank tensor whose elements are defined as A;; = % [0;n; +
oin; — nimogn; — nmoen;]. Ky (i = 1, 2, 3) and Ky are
elastic constants [26]; for K|; > Koy, Koy > Koy, K33 >0
and K,, > 0, which is the case of typical nematics, the
ground state is a uniform director [27]. LCLCs would be a
special case with K,, < K,4, hence their spontaneous
tendency to twist. However this poses a major question:
what is the microscopic mechanism underlying sponta-
neous twist in a 3D fluid of axially symmetric particles?

Here we have addressed this question considering a
minimalist model of hard rods. Previous studies showed
that excluded volume interactions are able to induce SMSB
in condensed matter. It is well known that, for purely
geometrical reasons, achiral objects, such as spheres and
tetrahedra, can pack into helical structures [28]. Right- and
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left-handed chiral structures were found in 2D liquid
crystals of achiral hard triangles [29-32] and rodlike
particles [33-35]. In a 3D fluid of rigid, achiral bent
particles, excluded volume interactions, which reflect the
transversal shape polarity of particles, were shown to drive
the formation of the twist-bend nematic phase, character-
ized by local transversal polar order [36,37]. In this Letter
we show that the ability to induce SMSB in a 3D fluid is
encoded in an even simpler interaction, and the driving
mechanism is different from the other cases mentioned so
far, since a key role is played by the orientational fluctua-
tions of particles. This result is obtained using Onsager-
Straley theory [38,39] to calculate the full set of nematic
elastic constants, including the saddle splay one, K,4. This
is an achievement by itself, since K,,, which is believed to
play a key role in relevant phenomena [40], remains a
controversial quantity, mainly owing to the difficulty of its
accurate experimental determination. The controversy con-
cerns the theoretical determination of K,4 as well [41], and
this has discouraged progress in modeling.

The starting point in our microscopic approach is an
expression for the Helmholtz free energy. This includes an
ideal contribution, which is the sum of the ideal gas term
and a term accounting for the decrease in rotational entropy
due to nematic ordering, in addition to an excess contri-
bution that originates from interparticle interactions. Under
the common assumption that orientational order is not
perturbed, which is valid for deformations on a length scale
far above the molecular size, director distortions affect only
the excess free energy. This quantity is generally expressed
as a double integral of a kernel related to the pair
interaction, g(R4,Rg,i(R,),7(Rp)), taken over the posi-
tion of the c.m. of two particles (R, and Rp). The standard
procedure consists of Taylor expanding the director in this
kernel with respect to the undeformed state, and terms
proportional to the square of the first derivatives are
retained. The identification of the elastic constants as the
coefficients of the invariants appearing in Eq. (1) involves
the definition of a free energy density in the Oseen-Frank
sense; an intrinsic ambiguity in this definition was pointed
out [41], which would translate into an ambiguity in the
microscopic definition of the so-called surfacelike elastic
constants, such as K,,. Here, we have bypassed this
problem by calculating the free energy of a finite volume.
To avoid boundary effects, this is thought to be a small
cubic box with virtual walls, in the interior of a large
macroscopic body (see Fig. 1 and the Supplemental
Material [42]). Considering a system of hard rodlike
particles, the excess free energy of the small box of volume
V is expressed at the second virial level [38] as
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FIG. 1. Macroscopic body of volume V (on the left) and inner
box of volume V, enclosed by virtual walls (on the right). R, and
Rj are position vectors of the c.m. of particles A and B.

where R p =Rz — R4, @iy, and @iz are unit vectors
parallel to the axis of the two particles, and
eag(Rup, 0y, 0ig) is the Mayer function, defined on the
basis of the interaction potential Uyp: ep(Rap,tiy, lg) =
exp{—Uap(Rap.ls,0t5)/kgT} — 1 [43]. Moreover, p =
N/V, with N the number of particles in the volume V,
is the number density, whereas # is the modified Parsons-
Lee [44,45] factor, n=(1—4pv/3)/(1—pveg)?, With veg
the effective volume of a single particle [46] [see the
Supplemental Material for details and justification of
Eq. (2)]. Finally, f(@ - i(R)) is the single particle orienta-
tional distribution function (ODF), which in general can be
thought of as a function of the angle between the axis of arod
and the local director at the position of its center of mass. The
outermost integral in Eq. (2), over the position of one
particle, extends to the volume V of the small box, whereas
the next integral, over the coordinates of the other particle, is
over the whole volume V of the macroscopic body.

For the connection with Oseen-Frank free energy we
considered the following explicit forms of the director field:

(4X.0.(1+gZ2))(¢*X* + (14 qZ)*)7/2
[sin(¢Y),0,cos(qY)]

i(R.q) =< [¢Z,0,(1 —qX)}(qZZZ—i-(l _qx)2)—1/2 (3)
[gX.—qY 1](1 4+ ¢*(X>+Y?))71/2
-

qY.gX. 1](1+¢*(X*>+Y?))~/?

where ¢ plays the role of deformation wavelength. Forg — 0
these deformations correspond to approximately pure splay,
twist, bend, A mode and double twist, respectively; thus the
integral of Eq. (1) over a cubic box of volume V in the
presence of such deformations in the regime gV'/3 < 1 gives

14* V Ky
%qz V Ky

ai(g) = 12 v K, (4)
2> V Ky

2612 14 (Kzz - K24)-
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It can be noted that K», is treated on the same footing of the
other three (often dubbed “bulk™) elastic constants; the fifth
deformation, which locally corresponds to pure double twist,
does not add new information, but is used here as a
consistency check. Based on Eq. (4), the elastic constants
are obtained by parabolic fitting of the microscopic defor-
mation free energy calculated for the director fields defined in
Eq. (3). It may be worth mentioning that the method can be
extended to any arbitrary deformation, the only limit being the
assumption of constant order parameter, which might fail for
short range deformations.

We performed calculations for rigid linear chains of M
tangent hard spheres of diameter o, with the interaction
potential defined as U 45 = oo if at least two spheres overlap;
otherwise U,z = 0. For the ODF we adopted the simplest
form compatible with local D, symmetry: f(i -i(R)) =
exp{cli-A(R))*}/ [ di exp{c[a -A(R)]*}, where c is a
parameter related to the nematic order parameter S. Given the
number density p, or the volume fraction ¢ = vyp, where v,
is the geometrical volume of a single particle, the equilibrium
value of c is determined by minimization [47] of the total
Helmbholtz free energy in the undeformed nematic phase (see
Ref. [48] and the Supplemental Material for details). All
results reported in the following were obtained for linear
chains of M = 12 spheres at ¢ = 0.21 (S = 0.79), slightly
above the isotropic-nematic transition.

Figure 2 shows the deformation free energy
AA%®T (g) = A% (gq) — A (q = 0), together with the results
of parabolic fitting according to Eq. (4). The bulk elastic
constants are in the order K33 > K| > K,,, as already
found for hard rodlike particles [49]; what is interesting is
that K,4 is higher than all the other constants but Ks;.
Accordingly, the deformation free energy for double twist
has negative curvature, which indicates a spontaneous
tendency to double twist. Although hard particle models
can be used to describe the behavior of lyotropic liquid
crystals [38,50] a strict comparison with experimental
values for LCLCs is not possible since these are multi-
component systems, made of multidisperse columnar
aggregates, which cannot be simply mapped into a collec-
tion of identical rigid rods. Anyway, we may notice that
estimates of the bulk elastic constants based on the values
in Fig. 2, with 6 ~ 1 nm [51], have the same magnitude and
relative order as experimental data for Sunset Yellow, a
typical LCLC with a persistence length of about 10 nm
(K71 =4.3 pN, K5, = 0.7 pN, K33 = 6.1 pN, at T around
300 K and ¢ = 0.20) [52]. For K,, two quite different
values can be found in the literature, that is 27.5 pN [18]
and 6.25 pN [53], of which the latter compares well with
our prediction.

According to Onsager theory, what drives the formation
of the uniaxial nematic phase is the decrease of excluded
volume ongoing from an isotropic to a uniaxial orienta-
tional distribution of particles. However, there is a more
subtle effect, which comes from orientational fluctuations:
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FIG. 2. Deformation free energy AA%! as a function of the
deformation wave number ¢, for the modes defined in Eq. (3).
Lines show the results of parabolic fitting to Eq. (4).

the excluded volume between two rods with some degree of
orientational disorder is smaller when they slide on each
other with a preferential twist, rather than keeping, on
average, a parallel configuration. This can be clearly
appreciated in the contour plot in Fig. 3(a), which shows
the difference of the average excluded volume in double
twist [defined as in Eq. (3)] and in uniform director field
(”)|Z2), for a rod having its c.m. on the XZ plane, which
rotates around a rod with its c.m. in the origin. Here we can
see that the largest contribution comes from side-by-side
configurations where the centers of mass of the rods are
close to each other. The mechanism underlying sponta-
neous twist is illustrated by the cartoons in Figs. 3(b)-3(c),
where hourglasses mimic the volume occupied by a rod that
fluctuates around its main ordering axis. We can conjecture
that the very same mechanism will also contribute sponta-
neous twisting of hard rods in 2D [35].

From a first glance at Fig. 2 one could guess that double
twist corresponds to a free energy unbounded from below.
Actually, owing to compatibility constraints, double twist
in 3D Euclidean space is necessarily accompanied by other
deformation modes, whose cost prevents the free energy
from going to negative infinity [54]. Let us consider a
double twist configuration in a cylinder of radius R, and
height A, with free boundary conditions on the surface.
Assuming the director field 72(r) = [0, sin&(r), cos 6(r)] in
cylindrical coordinates [54] where 0(r) is the twist angle,
integration of Eq. (1) leads to the following expression for
the deformation free energy per unit length:

def Runax i 2
G / i {@ ( 6,_sm(29)>
h 0 2 2r

sin*@ 1 sin(26)\ 2
+K332r2+(K22—K24)<9/+ ( )>}

2 2r
(5)
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(a) Contour plot of the difference between average excluded volume in double twist and in uniform director field, for two rods

having their c.m. in the origin and in the XZ plane, respectively. The director field is defined as in Eq. (3) with ¢ = 0.056~! in double
twist, whereas it is parallel to the Z axis in the uniform system. Color ranges from blue to red for increasingly negative values. Cartoons
illustrating the excluded volume between pairs of particles in (b) a uniform and (c) a double twist director field. Hourglasses represent
the volume occupied by a rod fluctuating around its ordering axis. (d) Twist angle € (black solid line) along with the profile of the scaled
deformation free energy density Aa%" = Aa%R2, . (red solid line) and the contribution of different modes according to Eq. (5) (dashed
lines), as a function of the reduced radius r* = r/R,,. Inset: double twist configuration, with arrows representing the director

field, (r*) = [0, sin O(r*), cos O(r*)].

where @' = dO(r)/dr. The profile of 6(r) that minimizes
the free energy is determined by the competition between
the tendency to double twist and the restoring force
opposing the simultaneous bend and A deformations. It
is obtained by solving the corresponding Euler-Lagrange
equation with 6(0) =0 and free boundary condition at
r = R (see the Supplemental Material [42] for details).
The black line in the plot in Fig. 3(d) shows the numerical
solution [55], calculated using the elastic constants reported
in Fig. 2, as a function of the reduced radius r* = r/R ..
The twist angle reaches a value of around 65° at the
boundary, with a slope that increases with the scaled
distance from the cylinder axis. Positive @ values corre-
spond to a right-handed twist; however, given the symmetry
of Eq. (5) with respect to a change of sign of the twist angle,
there is an equivalent degenerate solution corresponding to
a left-handed twist. The presence of chirality in particles
would yield an additional linear twist term in the defor-
mation free energy, with the primary effect of making
inequivalent the two solutions. The plot in Fig. 3(d) also
reports the profiles of the scaled deformation free energy
density and of the contributions of different modes [see
Eq. (5)] multiplied by r* so that the area under the curves is
a deformation free energy per unit length. We can see that,
as a consequence of the high value of K,,, the tendency to
twist is counterbalanced by a large cost of A mode, which
adds to a smaller contribution for bending.

Experimental evidence of spontaneous double twist has
been reported for confined achiral LCLCs [18-22], and
this has created interest in what would be unique in
these systems. Actually, our results point to an entropically
driven mechanism, which would be quite general for

rodlike lyotropic liquid crystals; this suggests extending
the experimental investigation to other achiral lyotropic
systems [56]. Whether spontaneous twist can be expected
in thermotropic liquid crystals, which are typically made
of relatively flexible molecules with a role of attractive
dispersion interactions, deserves further investigation.
Interestingly, transient twisted defect structures were
recently reported in achiral thermotropic nematics [57],
but at present it is hard to say if there is a relation with our
findings.

Double twist structures are typical of liquid crystal blue
phases [58] and half-skyrmions [59], both observed in
chiral materials, so their existence has been commonly
discussed in terms of molecular chirality. Here we have
shown that an intrinsic tendency toward double twist is
encoded in uniaxial nematic order driven by excluded
volume interactions between rigid uniaxial particles.
Instability of uniform uniaxial order leads to SMSB, and
finite twist is achieved only because of the elastic cost for
other accompanying deformations. This mechanism is
quite different from that underlying cholesteric order (twist
along a direction perpendicular to the ordering axis), which
requires molecular chirality and corresponds to a stable
thermodynamic state. An analogous scenario was proposed
to distinguish self-limiting assembly in twisted bundles of
chiral and achiral systems [60], although in that case
fluctuations were frozen and a possible driving force for
spontaneous twist was identified in the cohesive inter-
actions between semiflexible filaments.

In summary, we report on a distinct entropic mechanism
for SMSB in rodlike nematics, with a special role of
orientational fluctuations leading to an elastic instability.
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Hopefully this will serve to stimulate experimental and
theoretical work, to further explore the existence of similar
mechanisms in soft matter, where chiral structures are
involved in phenomena as diverse as the creation of
topological states [61] or the organization of biofilaments
in cells [62,63].
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