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We construct an exactly solvable lattice model for a deconfined quantum critical point (DQCP) in
(1þ 1) dimensions. This DQCP occurs in an unusual setting, namely, at the edge of a (2þ 1) dimensional
bosonic symmetry protected topological (SPT) phase with Z2 × Z2 symmetry. The DQCP describes a
transition between two gapped edges that break different Z2 subgroups of the full Z2 × Z2 symmetry. Our
construction is based on an exact mapping between the SPT edge theory and aZ4 spin chain. This mapping
reveals that DQCPs in this system are directly related to ordinary Z4 symmetry breaking critical points.
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Introduction.—Deconfined quantum critical points
(DQCPs) describe unusual “Landau forbidden” phase
transitions in which the unbroken symmetry group of
one phase is not a subgroup of the unbroken symmetry
group of the other phase [1,2]. The paradigm of this kind of
critical point is the hypothesized (2þ 1) dimensional
DQCP between the valence bond solid (VBS) phase and
the Néel phase on a square lattice. The VBS phase has
internal SO(3) rotation symmetry but spontaneously breaks
C4 lattice rotation symmetry, while the Néel phase has C4

symmetry but breaks SO(3) symmetry. Crucially, the two
symmetries are intertwined: vortices of the C4 symmetry
carry uncompensated spin-1=2 moments [3]. As a result,
disordering with respect to the C4 symmetry can cause
ordering under the SO(3) symmetry, resulting in a hypoth-
esized direct transition between the two phases.
Thus far, DQCPs have been studied primarily using field

theory and numerical methods [4,5]. One reason for this is
the lack of analytically tractable lattice models for DQCPs.
In this Letter, we take a step towards a more analytical
microscopic approach, by constructing an exactly solvable
lattice model for a (1þ 1) dimensional DQCP. The exact
solvability of our model makes explicit the mechanism
for the DQCP, which lies in the unusual structure of the
domain walls. This DQCP has a similar field theory
description to the (1þ 1) dimensional DQCP that was
analyzed in Refs. [6–8] using bosonization (see also
Refs. [9,10]). However, our DQCP involves a different
lattice realization with different (nonspatial) symmetries.
The key idea behind our solvable lattice model is to

consider a DQCP in an unusual setting, namely, at the
edge of a (2þ 1) dimensional symmetry protected topo-
logical (SPT) phase. SPT edge theories provide a natural
setting for DQCPs because they also have intertwined
symmetries [11,12]. In particular, a SPT phase with a
“mixed anomaly” between two symmetries has an edge
theory where domain walls of one symmetry carry frac-
tional charge of the other symmetry [13–15]. Like in the

system with the VBS and Néel phases, disordering with
respect to one symmetry, by proliferating domain walls of
that symmetry, may cause ordering with respect to the other
symmetry, thereby realizing a DQCP.
We consider the simplest example of such a SPT edge

theory: the edge theory of a 2DZ2 × Z2 symmetric bosonic
SPT phase with a mixed anomaly between the two Z2

symmetries. Using an exact mapping between the SPTedge
theory and a Z4 spin chain, we rigorously establish the
existence of a DQCP and derive the full critical theory.
Z2a × Z2b SPT edge theory.—Our model for the SPT

edge theory consists of a chain of spin-1=2’s with two spins
σj and τjþ1=2 in each unit cell, labeled by j. The two Z2

symmetries, denoted by Z2a and Z2b, are generated by
unitary operators Ua and Ub with

Ua ¼
Y
j

σxj Ub ¼
Y
j

τxjþ1=2i
1−σz

j
σz
jþ1

2 : ð1Þ

Note that Ub does not act “on site” in this representation:
this is allowed since (1) describes the effective action of the
symmetries on the edge degrees of freedom; in the original
2D spin system that describes the bulk SPT phase, both
symmetries act on site.
The above symmetry action (1) carries a mixed anomaly

between the two symmetries. One manifestation of this
mixed anomaly is that a pair ofZ2a domain walls is charged
under Z2b. To see this, consider the Hamiltonian

H ¼ −
X
j

σzjσ
z
jþ1 −

X
j

τxjþ1=2: ð2Þ

The two degenerate ground states of this Hamiltonian, which
are illustrated in Figs. 1(a) and 1(b), spontaneously break
Z2a. Now consider a state with two domain walls jψ2DWi,
as shown in Fig. 1(c). From (1), we can see that such a state
is actually charged under Z2b: Ubjψ2DWi ¼ −jψ2DWi.
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Evidently, twoZ2a domain walls carry aZ2b charge, so each
domain wall can be associated with “half” a Z2b charge.
Another way to think about this anomaly is in terms of

the fusion rules for domain walls. There are actually four
kinds of domain walls for this system if we distinguish
between states that carry different quantum numbers under
the unbroken Z2b symmetry. These four kinds of domain
walls are shown in Fig. 2: (1) a “no-domain wall” state;
(2) a (bare) Z2a domain wall; (3) a Z2b charge; (4) a
composite of a Z2a domain wall and a Z2b charge. The fact
that two Z2a domain walls fuse to a Z2b charge means that
the fusion rules for the domain walls have a Z4 group
structure rather than the usual Z2 × Z2 structure. This Z4

fusion structure points to a connection between our edge
theory with an anomalous Z2a × Z2b symmetry given by
(1) and an ordinary (nonanomalous)Z4 spin chain (this was
also noted in Ref. [16]).
Z4 spin chain.—The Z4 spin chain is a spin chain where

each spin can be in four different states. The two basic
operators acting on the jth spin are the “clock” operator Cj

and the “shift” operator Sj. These operators take the
following form (in the clock eigenstate basis):

Cj ¼

0
BBB@

1 0 0 0

0 i 0 0

0 0 −1 0

0 0 0 −i

1
CCCA Sj ¼

0
BBB@

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1
CCCA: ð3Þ

Note that Cj and Sj satisfy the algebra

C4
j ¼ S4j ¼ 1 CjSj ¼ iSjCj: ð4Þ

In this Letter, we will be interested in Z4 spin chains
with a global Z4 symmetry given by UZ4

¼ Q
j Sj. Such

spin chains are closely related to the Z2 × Z2 SPT
edge theory described above. To see the relation, con-
sider a symmetry breaking Hamiltonian of the form
H ¼ −

P
j
1
2
ðC†

jCjþ1 þ C†
jþ1CjÞ. This system has four

degenerate ground states, and likewise four different
species of domain walls. The different types of domain
walls can be conveniently labeled by fourth roots of unity,
f1; i;−1;−ig; the label associated with each domain wall is
given by C†

jCjþ1 (assuming the domain wall is located
between spins at sites j and jþ 1). The crucial point is that
these domain walls obey Z4 fusion rules just like the
domain walls for the Z2 × Z2 SPT edge theory, suggesting
that there may be a way to map one system onto the other.
Mapping between the models.—We will now map the

Hilbert space of the Z2 × Z2 SPT edge theory onto the
Hilbert space of the Z4 spin chain.
As we mentioned earlier, the basic idea is to map the four

kinds of domain walls in the Z4 spin chain onto the four
kinds of domain walls in the SPT edge theory. To do this,
we need to map the spin chain operator C†

jCjþ1 (which
measures Z4 domain walls) onto a corresponding domain
wall operator in the SPT edge theory. The latter operator
should have the four domain wall configurations in Fig. 2
as eigenstates, with eigenvalues 1; i;−1, and −i. It should
also be invariant under the Z2 × Z2 symmetry, since we
want our mapping to map Z4 symmetric operators in the
spin chain (like C†

jCjþ1) ontoZ2 × Z2 symmetric operators
in the SPT edge theory. These requirements are satisfied by
the operator τxjþ1=2i

ð1−σzjσzjþ1
Þ=2, so we map

C†
jCjþ1 ↔ τxjþ1=2i

ð1−σzjσzjþ1
Þ=2: ð5Þ

In addition to C†
jCjþ1, we also need to work out how our

mapping acts on the shift operator Sj. To do this, notice that
Sj shifts the domain wall measured by C†

j−1Cj by i and the

domain wall measured byC†
jCjþ1 by −i. This means that Sj

should map to an operator whose action on SPT domain
wall states is of the form shown in Fig. 3. Another
requirement is that Sj should map onto an operator that
is invariant under the Z2 × Z2 symmetry. These two
requirements lead us to the mapping

FIG. 1. (a) and (b) The two degenerate ground states of the
Hamiltonian (2) that spontaneously breaks Z2a. The blue arrows
represent the σj spins and the black arrows represent the τjþ1=2

spins. Both states are eigenstates of Ub with eigenvalue þ1.
(c) Domain walls occur at the boundaries between these states. A
state with two Z2a domain walls (indicated by the dashed lines)
has eigenvalue −1 underUb, meaning two Z2a domain walls fuse
to a Z2b charge.

FIG. 2. A mapping between the four kinds of domain walls in
the SPT edge theory and the four kinds of domain walls in the Z4

spin chain, which are labeled by their eigenvalues f1; i;−1;−ig
under C†

jCjþ1. As discussed in the main text, two Z2a domain
walls (second configuration) fuse to a Ub charge, which is
equivalent to a τjþ1=2 spin flip (third configuration).
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Sj ↔ σxj

��
1þ σzj−1σ

z
j

2

�
þ
�
1 − σzj−1σ

z
j

2

�
τzj−1=2

�

×

��
1þ σzjσ

z
jþ1

2

�
τzjþ1=2 þ

�
1 − σzjσ

z
jþ1

2

��
: ð6Þ

Equations (5) and (6) define a mapping between local Z4

symmetric operators in the spin chain and local Z2 × Z2

symmetric operators in the SPT edge theory. To understand
the global properties of this mapping, we note that
straightforward algebra shows that

Y
j

Sj ↔ Ua

Y
j

C†
jCjþ1 ↔ Ub: ð7Þ

These equations tell us how the various symmetry
sectors map onto one another. In particular, we see that
the two sectors of the SPT edge theory with Ua ¼ �1 and
Ub ¼ 1 map onto the two spin chain sectors withQ

j Sj ¼ �1, and with periodic boundary conditions. On
the other hand, the two SPT sectors with Ua ¼ �1 and
Ub ¼ −1 map onto spin chain sectors with

Q
j Sj ¼ �1

and antiperiodic boundary conditions. Here, the antiperi-
odic boundary condition can be implemented, on a closed
loop of N sites, by using CNþ1 ¼ −C1 instead of CNþ1 ¼
C1 (which corresponds to the periodic case). Putting this all
together, we see that the Hilbert space of the SPT edge
theory maps onto the Hilbert space of the Z4 spin chain
with a particular combination of sectors, namely, the two
symmetry sectors

Q
j Sj ¼ �1, with either periodic or

antiperiodic boundary conditions.
Alternatively, one can think of this particular combination

of sectors as describing aZ4 spin chain coupled to aZ2 gauge
field fνjþ1=2g with the gauge constraint νxj−1=2ν

x
jþ1=2 ¼ S2j .

In the gauged spin chain, the two boundary conditions
correspond to sectors with even and odd Z2 gauge flux,
while the global constraint

Q
j Sj ¼ �1 is imposed by gauge

invariance. In this Letter, we will mostly work with the
explicit sector description rather than the gauged spin chain
language, but the latter is a completely equivalent way to
think about our mapping.
Using the mapping.—We will now use the mapping to

understand the phases and phase transitions of the SPTedge
theory. We start with the Z4 spin chain, which is expected
to support three different gapped phases: an ordered phase
where the Z4 symmetry is spontaneously broken, a dis-
ordered phase where the symmetry is unbroken, and a
partially ordered phase where the Z4 symmetry is broken
down to Z2 [17]. We can diagnose each of these phases in
terms of an order parameter O, and a disorder parameter D
defined as follows [18]:

O ¼ lim
ji−jj→∞

hC†
i Cji D ¼ lim

ji−jj→∞

�Yj
k¼i

Sk

�
: ð8Þ

Each phase has a different pattern of order and disorder
parameters:

Ordered phase∶ O ≠ 0; D ¼ 0

Disordered phase∶ O ¼ 0; D ≠ 0

Partially ordered phase∶ O ¼ 0; D ¼ 0: ð9Þ

Now, according to (7), our mapping takes the order
parameter O for the Z4 spin chain onto the symmetry
transformation Ub restricted to an interval, which is, by
definition, a disorder parameter for Z2b. Likewise, our
mapping takes the Z4 disorder parameter D to a Z2a
disorder parameter. It follows that the ordered phase of the
spin chain corresponds to a phase of the SPT edge theory
with a vanishing Z2a disorder parameter and a nonvanish-
ing Z2b disorder parameter—i.e., a phase with broken Z2a
symmetry and unbroken Z2b symmetry. By the same
reasoning, the disordered phase of the spin chain maps
onto a phase with unbroken Z2a symmetry and broken Z2b
symmetry. Finally, the partially ordered phase of the spin
chain maps onto a phase where both Z2a and Z2b are
broken.
The most important application of these results, for our

purposes, involves phase transitions. In particular, consider
a hypothetical critical point between the Z2a broken
(Z2b unbroken) phase, and its partner, the Z2b broken
(Z2a unbroken) phase. Applying our mapping, such critical
points correspond to critical points between the ordered and
disordered phase of the Z4 spin chain. This means that the
problem of understanding DQCPs in the context of the SPT
edge theory maps onto the problem of understanding
ordinary symmetry breaking critical points for the Z4 spin
chain. Since the latter critical points are known to exist and
are well understood, this proves the existence of DQCPs
and also allows us deduce their structure.

FIG. 3. The action of Sj on domain wall states in the SPT edge
theory: Sj shifts the domain wall measured by C†

j−1Cj by i and

the domain wall measured by C†
jCjþ1 by −i. Here, j labels the

spin in the middle of each five-spin configuration.
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Exactly solvable model.—More concretely, we can use
our mapping to construct an exactly solvable Hamiltonian
that describes a continuous phase transition between the
Z2a broken (Z2b unbroken) phase, and the Z2b broken
(Z2a unbroken) phase of the SPT edge theory and therefore
describes a DQCP. To build such a Hamiltonian, we start
with an exactly solvable spin chain Hamiltonian that
describes a Z4 symmetry breaking transition. In particular,
we use the Z4 clock model:

HclockðαÞ ¼ −ð1 − αÞ
X
j

1

2
ðC†

jCjþ1 þ C†
jþ1CjÞ

− α
X
j

1

2
ðSj þ S†jÞ: ð10Þ

Later, we will review how to solve Hclock exactly; for now,
the only property we need is that Hclock belongs to the Z4

ordered phase for α < 1
2
and the disordered phase for α > 1

2
,

with a direct transition at α ¼ 1
2
.

To apply our mapping, we write

HclockðαÞ ¼ ð1 − αÞHa;clock þ αHb;clock; ð11Þ

where Ha;clock and Hb;clock describe the two sets of terms in
(10). Notice that Ha;clock and Hb;clock are both sums of
commuting terms. Furthermore, one can see that Ha;clock

and Hb;clock belong to the ordered and disordered phases,
respectively. Hence, applying our mapping to Ha;clock gives
a commuting Hamiltonian describing the Z2a broken
(Z2b unbroken) phase of the SPT edge theory [19]:

Ha ¼ −
X
j

�
1þ σzjσ

z
jþ1

2

�
τxjþ1=2: ð12Þ

Similarly, applying our mapping to Hb;clock, gives a
commuting Hamiltonian for theZ2b broken (Z2a unbroken)
phase:

Hb ¼ −
X
j

�
σxj

�
1þ σzj−1σ

z
jþ1

2

��
τzj−1=2 þ τzjþ1=2

2

�

þ σxj

�
1 − σzj−1σ

z
jþ1

2

��
1þ τzj−1=2τ

z
jþ1=2

2

��
: ð13Þ

Our exactly solvable model that tunes between these two
symmetry breaking phases is given by

HðαÞ ¼ ð1 − αÞHa þ αHb: ð14Þ

Like Hclock, this Hamiltonian describes a direct transition
between the two phases (and hence a DQCP) at α ¼ 1

2
.

Exactly solvable critical point.—We now review how to
solve the Z4 clock model HclockðαÞ (10) and hence also

HðαÞ. The basic idea is to map Hclock onto two decoupled
transverse field Ising models which undergo simultaneous
symmetry breaking transitions. To do this, we map each
four-dimensional spin onto two spin-1=2 degrees of free-
dom, denoted by μj and ρj (note that μj and ρj should not
be confused with σj and τjþ1=2). We then write

Cj ¼
e−iπ=4ffiffiffi

2
p ðμzj þ iρzjÞ ð15Þ

and

Sj ¼ μxj

�
1þ μzjρ

z
j

2

�
þ ρxj

�
1 − μzjρ

z
j

2

�
: ð16Þ

Using (15) and (16), we compute

C†
jCjþ1 þ C†

jþ1Cj ¼ μzjμ
z
jþ1 þ ρzjρ

z
jþ1

Sj þ S†j ¼ μxj þ ρxj : ð17Þ

Applying this map to the Z4 clock model in Eq. (10)
gives

Hclock ¼ −ð1 − αÞ
X
j

1

2
ðμzjμzjþ1 þ ρzjρ

z
jþ1Þ

− α
X
j

1

2
ðμxj þ ρxjÞ; ð18Þ

which recovers the well-known fact that theZ4 clock model
is unitarily equivalent to two decoupled transverse field
Ising models.
This mapping implies that the DQCP that occurs at

α ¼ 1=2 is equivalent to two copies of the critical Ising
theory [20]. More precisely, the DQCP is equivalent to a
particular combination of sectors of the Ising theory:
translating the sectors

Q
j Sj ¼ �1 and CNþ1 ¼ �C1 into

the Ising language, we see that HðαÞ is described by
the symmetry sector

Q
j μ

x
jρ

x
j ¼ 1, with the same (periodic

or antiperiodic) boundary conditions in both μ, ρ, i.e.,
μzNþ1 ¼ �μz1 and ρzNþ1 ¼ �ρz1 [21].
Using this mapping we can obtain all the critical

exponents of the DQCP. For example, the correlation
length ξ near the critical point diverges as ξ∼ð1=jα−1

2
jνÞ

with ν ¼ 1. Also, the two-point correlators for the Z2a and
Z2b order parameters σz and τz are given by

hσziσzji ∼
1

ji − jj1=2 hτziþ1=2τ
z
jþ1=2i ∼

1

ji − jj1=2 : ð19Þ

Is the above DQCP stable to perturbations? The answer
to this question depends on what additional symmetries
we impose beyond Z2a × Z2b. For example, suppose we
impose both time-reversal and parity symmetry. In this
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case, it is well known that the critical point of the Z4 clock
model does not have any relevant symmetric operators
beyond the tuning parameter α, but it does have a marginal
operator corresponding to λ

P
jðC2

jC
2
jþ1 þ S2jÞ. Adding this

operator moves the system along a critical line [17,22,23].
Therefore the DQCP that we described above is actually
part of a deconfined quantum critical linewith continuously
varying exponents (see the Supplemental Material [24]
for more details). On the other hand, if we don’t impose
additional symmetries, then the critical point has other
relevant symmetric operators that drive the system into a
gapless phase, destroying the direct transition. These
are known as “chiral perturbations,” and are given
by λφ

P
j ðC†

jCjþ1eiφ þ H:c:Þ and λϑ
P

j ðSjeiϑ þ H:c:Þ
[27–30]. More generally, if we consider the whole critical
line, there is a region (i.e., a range of λ) where the chiral
perturbations are irrelevant [22,24,27–29]. In this region,
time-reversal symmetry and parity symmetry are not
required to stabilize the transition.
Self-duality at criticality.—An interesting aspect of the

above DQCP is that it is self-dual: there is a duality
transformation that maps the critical point to itself and
exchanges the Z2a and Z2b order parameters in (19). This
self-duality is reminiscent of the self-duality that occurs in
other DQCPs, such as in the XY antiferromagnet to VBS
transition obtained from adding easy-plane spin anisotropy
to the Néel to VBS transition [1,2,31].
The duality transformation—denoted by Uc—is easiest

to understand in terms of theZ4 spin chain variables: in this
description, Uc maps C†

jCjþ1 onto Sjþ1 and maps Sj onto

C†
jCjþ1. This is similar to the Kramers-Wannier duality, but

unlike standard Kramers-Wannier duality, Uc is both
(1) unitary and (2) locality preserving, in the sense that
it maps local operators to local operators. These properties
are due to the unusual sector structure in our Z4 spin chain,
or equivalently the fact that theZ4 spin chain is coupled to a
Z2 gauge field (see the Supplemental Material [24] for
more details). One consequence of the unitarity and locality
of Uc is that Uc can also be viewed as an ordinary
symmetry, rather than a duality.
Discussion.—As emphasized above, at the core of our

construction is the mapping between the Z2 × Z2 SPT edge
theory (with a mixed anomaly) and the Z4 spin chain [(5)
and (6)]. This mapping can be readily generalized to any
ZN1

× ZN2
SPT edge theory with a primitive [32] mixed

anomaly. Specifically, any edge theory of this kind can be
mapped onto a ZN1N2

spin chain in such a way that the
Landau forbidden transition in the edge theory maps onto
an ordinary symmetry breaking transition in the spin chain.
Moving forward, it would be interesting to find examples

of these mappings for other kinds of anomalies, such as
“type-III anomalies” [14,15], or for non-Abelian symmetry
groups. Examples of this kind could give solvable DQCPs
with richer structure. It would also be interesting to

generalize to higher dimensional systems, though this is
not straightforward since our construction relies on charges
and domain walls having the same dimensionality, as
shown in Fig. 2.
Another interesting generalization is to add disorder to

our model, by drawing the coefficients of the terms in
Ha;clock and Hb;clock from random distributions. It was
shown in Refs. [34–36] that strongly disordered ZN clock
models have continuous transitions with critical properties
that can be obtained exactly using a renormalization group
analysis. In the corresponding SPT edge theory, this kind of
model would give an example of a disordered DQCP.
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