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Controlling edge states of topological magnon insulators is a promising route to stable spintronics
devices. However, to experimentally ascertain the topology of magnon bands is a challenging task. Here we
derive a fundamental relation between the light-matter coupling and the quantum geometry of magnon
states. This allows us to establish the two-magnon Raman circular dichroism as an optical probe of magnon
topology in honeycomb magnets, in particular of the Chern number and the topological gap. Our results
pave the way for interfacing light and topological magnons in functional quantum devices.
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The study of topological states of matter has recently
been extended to systems with bosonic quasiparticles such
as magnons, photons, excitons, and polaritons [1–10]. The
large interest in topological states stems from the hope of
utilizing their properties to realize fault-tolerant quantum
information devices for large-scale quantum computing.
Several predictions exist of how to realize paradigmatic
models of topological matter such as the quantum Hall and
quantum anomalous Hall effects with magnons [9–12]. In
electronic systems, where the edge state population can be
controlled by shifting the chemical potential, e.g., through
electrostatic gating, it is straightforward to experimentally
verify the topological nature of a given state via conduc-
tivity measurements. In contrast, magnon systems lack a
chemical potential, and the ground state is usually a Bose-
Einstein distribution centered around zero momentum. In
order to harness magnon edge states for the realization of
stable spintronics devices, it is therefore necessary to find
other means of probing the topology of the magnon bands.
The topology of two-dimensional band structures is

quantified by their Chern numbers, which are given by
an integral of the Berry curvature over the Brillouin zone
[13]. The Berry curvature can in turn be viewed as the
imaginary part of the more general quantum geometric

tensor [14], which endows the Hilbert space of quantum
states with a Riemannian structure [15]. Both the Berry
curvature and the quantum metric, the real part of the
quantum geometric tensor, are crucial for the understanding
of a plethora of physical effects, such as flat band super-
fluidity [16], superconductivity [17], orbital magnetic
susceptibility [18,19], and the nonadiabatic anomalous
Hall effect [20]. Recently, a connection was found between
the quantum geometric tensor and the light-matter coupling
(LMC) in noninteracting fermionic systems [21], as well as
between the Berry curvature and angle-resolved photo-
emission spectra [22–25]. Although a similar connection
for bosonic systems would allow us to optically address the
topology of magnon bands, the generalization of these
results to boson systems is nontrivial due to the different
exchange statistics and transformation properties of the
boson operators.
Here, we specifically show that the magnon topology of

canted honeycomb antiferromagnets (AFMs) can be probed
at zero temperature by the two-magnon Raman circular
dichroism (RCD). We demonstrate that the frequency-
integrated RCD is tied to the Chern number of the magnon
bands, while frequency-resolved measurements of the RCD
give access to the size of the topological magnon gap. More
generally, we show that the connection between the RCD
and the magnon topology follows from a fundamental
relation between the light-matter coupling and the quantum
geometric tensor for noninteracting boson systems, which
we derive. Our results are relevant for a large class of van
der Waals (vdW) honeycomb magnets, where the magnon
band structure is topological [26,27].
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The low-energy magnetic properties of monolayer vdW
transition-metal (phosphorous) trichalcogenides, such as
CrI3, CrCl3, MnPS3, and MnPSe3, are described by a short-
range spin Hamiltonian on the honeycomb lattice [28,29].
To lowest order, this Hamiltonian reads

H0 ¼ Jxy
X

hiji
ðSxi Sxj þ Syi S

y
jÞ þ Jz

X

hiji
SziS

z
j

þD
X

⟪ij⟫

νijẑ · ðSi × SjÞ −B ·
X

i

Si; ð1Þ

where Jxy and Jz are the in-plane and perpendicular nearest-
neighbor exchange interactions,D is the strength of the next-
nearest-neighborDzyaloshinskii-Moriya interaction (DMI),
and B is an external magnetic field. Since the magnetic
ground state has an inversion center at every nearest-
neighbor bond, the nearest-neighbor Dzyaloshinskii-
Moriya interactions vanish [30]. The coefficients νij arise
from electronic virtual hopping processes along isosceles
triangles, and take values νij ¼ �1 as illustrated in Fig. 1.
Although the intrinsic strength of the DMI might be small, a

synthetic scalar spin chirality interaction can be induced via
circularly polarized lasers [10,31,32], and the DMI can be
enhanced through the application of out-of-plane electric
fields [33,34].
For Jxy > Jz and an out-of-plane magnetic fieldB ¼ Bẑ,

the ground state of Eq. (1) has a canted antiferromagnetic
order (see Fig. 1). The Néel vector of the field-free system
is taken to lie along the x axis, and will tilt into the xz plane
as B increases [35,36]. Employing a sublattice-dependent
Holstein-Primakoff transformation around the local spin
axes, the Hamiltonian is given to leading order in S−1 by
H0 ¼

P
k Φ

†
kH0kΦk in the basis Φ†

k ¼ ða†k; b†k; a−k; b−kÞ.
To diagonalize the Hamiltonian, we perform the
Bogoliubov transformation Φk ¼ UkΨk, where Uk is a
paraunitary matrix, and the resulting magnon energies are
denoted ϵkm (m ¼ �). The magnon band structure as a
function of B interpolates between that of a collinear AFM
(B ¼ 0) and that of a collinear ferromagnet (FM) obtained
above the saturation field Bs ¼ 6JS (see Fig. 3).
The Berry curvature of an antiferromagnet can be written

as ΩmðkÞ ¼
P

n Ω
ðnÞ
m ðkÞ, where ΩðnÞ

m is the contribution
of band n to the Berry curvature of band m and is defined
by [37]

ΩðnÞ
m ðkÞ¼−2Im

½ūmkτz∂yH0kunk�½ūnkτz∂xH0kumk�
ðϵkn− ϵkmÞ2

: ð2Þ

Here umk (ūnk) is the mth column (nth row) of the
transformation matrix Uk (Ūk ¼ τzUkτz), and the energies
in the denominator are the eigenvalues of the matrix τzH0.
The Chern number of bandm is given by the Brillouin zone
integral Cm ¼ ð2πÞ−1 RBZ dkΩmðkÞ. Except for the lines
D ¼ 0 and B ¼ 0, the magnon bands have nonzero Chern
numbers and are topological (see Fig. 2). The dominant
contribution to the Berry curvature of the magnon bands
comes from the K and K0 points, where Ωþ ¼ −Ω−.
In the presence of an external electromagnetic field, the

Hamiltonian acquires a dependence on the vector potential
A. In magnetic systems this dependence can arise from a
variety of optomagnetic interactions, the most common of
which are the Peierls coupling [38–40], the Aharonov-
Casher effect [41,42], and the inverse Faraday effect
[43,44]. The microscopic processes underlying these inter-
actions are briefly summarized in Table I. At optical
frequencies the dominant mechanism is two-magnon
Raman scattering, where magnon pairs are created at finite
k with equal and opposite momenta [39]. In honeycomb
antiferromagnets the Raman scattering probability is domi-
nated by contributions from the regions around K and K0.
In particular, the scattering of right-handed into left-handed
photons (left-handed into right-handed photons) mainly
generates magnons at K and K0 in the lower (upper) branch
(see Fig. 1). This leads to a nonzero Raman circular
dichroism that is shown below to be directly related to
the Berry curvature. Since the Berry curvatures of the lower

FIG. 1. Magnon band structure and two-magnon Raman
scattering in a canted honeycomb antiferromagnet. (a) and
(b) Illustration of a canted antiferromagnet on the honeycomb
lattice. Panel (a) shows a side view of the system indicating the in-
plane Néel order, out-of-plane ferromagnetic order, and canting
angle θ. Panel (b) shows a top view illustrating the direction of the
out-of-plane Dzyaloshinskii-Moriya interaction on each next-
nearest-neighbor bond. (c) Probabilities PαðPβÞ for magnon pair
creation in the lower (upper) magnon branch, via Raman
scattering of right- to left-hand polarized light, and vice versa.
(d) Schematic of the two-magnon Raman processes leading to a
nonzero circular dichroism: Incident photons of right- or left-
handed polarization (red and blue wiggly lines) are scattered into
left- or right-handed photons, respectively, while simultaneously
creating a magnon pair at the K or K0 points (solid lines). For
right- to left-handed (left- to right-handed) scattering magnons
are predominantely created in the lower (upper) band.
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and upper branches are opposite, this also leads to
a sign reversal of the RCD when the frequency crosses
the gap.
Expanding the total Hamiltonian in powers of A defines

the nth-order light-matter couplings LðnÞ as [21]

HðAÞ ¼ H0 þ Lð1Þ
μ Aμ þ Lð2Þ

μν AμAν þOðA3Þ: ð3Þ

The nth-order LMC is a tensor of rank n given by the
nth-order derivative of HðAÞ with respect to A. When the
dependence of the Hamiltonian on A is of the form
Hðk;AÞ ¼ Hðk −AÞ, the derivatives with respect to A
can be replaced by derivatives with respect to k. In this
case the linear and quadratic LMCs can be written as

Lð1Þ
μ ¼ −∂kμH0 and Lð2Þ

μν ¼ ∂kμ∂kνH0.
The relationship to the quantum geometric tensor is

established by evaluating the matrix elements of the
LMCs in the magnon basis. The magnon Hamiltonian for
the canted honeycomb AFM has the general form H ¼P

k Ψ
†
kHkΨk, whereΨ†¼ðα†k;β†k;α−k;β−kÞ [45]. Since the

geometry of the quantum states is encoded in the matrices
Uk connecting themagnon basisΨ to the spin-flip basisΦ, it
is useful to rewrite this as H ¼ P

k Ψ
†
kðŪkHkUkÞΨk,

where Hk is the Hamiltonian in the Φ basis. The magnon
Hamiltonian has a block structure, with matrix elements
belonging to either of two categories. The first category
corresponds to interband processes hαkjHjβki ¼
ðŪkHkUkÞαβ, which are the only types of transitions
allowed in the FM phase and will be denoted as FM
processes. The second category corresponds to pair creation

or annihilation processes hαkβ−kjHj0i ¼ ðŪkHkUkÞαβ̄,
which are the only types of transitions allowed in the
AFM phase and will be denoted as AFM processes. In
the canted phase both FM and AFM processes contribute to
the LMCs, and to distinguish them we use a bar over the
index corresponding to a state with negative momentum.
The LMCs are obtained from the Schrödinger

equation HkUk ¼ EkUk, where Ek is the diagonal matrix
of eigenvalues of τzHk and τz is the third Pauli matrix
in Bogoliubov space. Differentiating this equation and
multiplying by Ūk from the left gives Ūk½∂μHk�Uk ¼
½∂μEk�ŪkUk þ ðEk − ĒkÞ½Ūk∂μUk�, where Ek and Ēk are
used to distinguish energies corresponding to columns
(rows) of Uk (Ūk). The quadratic LMCs are similarly
obtained from the second derivatives of the Schrödinger
equation, and the matrix elements of the linear and
quadratic LMCs are summarized in Table II. In particular,
the quadratic LMCs are found to be related to the quantum
geometric tensor Tn

μν ¼ h∂μnkjð1 − jnkihnkjÞj∂νnki [14]
expressed in terms of the matrix Uk. Since the above
argument only relies on the form of the Hamiltonian and the
relation Hðk;AÞ ¼ Hðk −AÞ, the expressions in Table II
hold for any quadratic bosonic Hamiltonian with this
property.
Although the formal expressions are identical for FM

and AFM processes, the application of Hk to the trans-
formation matrices Uk introduces a factor τz in the AFM
case (since unk are eigenvectors of τzHk). This changes the
meaning of ūnk from being a column of the Hermitian
transpose U†

k to a column of the inverse U−1
k (in the FM

case these matrices are equivalent).

TABLE I. Mechanisms of light-matter coupling. Summary of the most common light-matter coupling mechanisms and their
underlying physical processes.

Mechanism Physical process

Aharonov-Casher effect Phase accumulation of magnetic moment in an electric field
Peierls phases Electric field modulation of virtual electronic hopping processes

Inverse Faraday effect An effective magnetic field generation by the optical spin density

TABLE II. Light-matter couplings and quantum geometry. Linear and quadratic light-matter couplings of interband and pair creation
or annihilation processes in terms of the single-magnon energies ϵnk and Bogoliubov transformation matricesUk with columns unk. The
vectors ūnk denote the rows of the inverse matrix U−1

k . In the summations over l, care must be taken to assign the correct sign to the
energies ϵlk in accord with their sign as eigenvalues of τzHk.

Ferromagnetic Antiferromagnetic

Lð1Þ
μ;nn

−∂μϵnk −∂μϵnk

Lð1Þ
μ;nm

−ðϵmk − ϵnkÞūnk∂μumk −ðϵmk þ ϵnkÞūnk∂μumk

Lð2Þ
μν;nn

∂μ∂νϵnk þ 2
P

lðϵnk − ϵlkÞRe½ðūnk∂μulkÞðūlk∂νunkÞ� ∂μ∂νϵnk − 2
P

lðϵnk þ ϵlkÞRe½ðūnk∂μulkÞðūlk∂νunkÞ�

Lð2Þ
μν;nm ½ð∂μϵmk − ∂μϵnkÞūnk∂νumk þ 1

2
ðϵmk − ϵnkÞūnk∂μ∂νumk

−
P

lðϵnk − ϵlkÞðūnk∂μulkÞðūlk∂νumkÞ� þ ðμ ↔ νÞ
½ð∂μϵmk þ ∂μϵnkÞūnk∂νumk þ 1

2
ðϵmk þ ϵnkÞūnk∂μ∂νumk

−
P

lðϵnk þ ϵlkÞðūnk∂μulkÞðūlk∂νumkÞ� þ ðμ ↔ νÞ
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The general relations in Table II can be used to establish
a connection between the quantum geometric tensor
and the Raman circular dichroism [46,47]. The RCD is
defined at normal incidence as χ ¼ PR − PL. It measures
the difference in total scattering cross section between an
incident laser with right- and left-handed polarization,
denoted by PR and PL, respectively. The scattering cross
section due to the Raman Hamiltonian HR is given by

Ps ¼
X

ns0
jhΨnjHss0

R jΨ0ij2δðℏωþ E0 − EnÞ; ð4Þ

where HR ∝ ðe�s · dijÞðes0 · dijÞ, es is a photon polarization
vector, and dij is the vector between spins i and j. The
incident polarization is denoted by s ¼ R (s ¼ L) for right-
handed (left-handed) light, and the scattered polarization s0
is summed over. Further, jΨni are eigenstates of the
equilibrium Hamiltonian H0, and the Raman energy ℏω ¼
ℏωin − ℏωsc is the difference between incident and scat-
tered photon energies. The RCD can be written in terms of

the LMCs as χ ¼ 8Im½ðLð2Þ
xx − Lð2Þ

yy ÞL̄ð2Þ
xy �, where L̄ð2Þ

μν

denotes the complex conjugate of Lð2Þ
μν .

In the collinear AFM limit B → 0, the Berry curvature
and the RCD are directly related via Ω ¼ −χ=ð2a2d2kÞ.
Here a is the lattice constant, dk ¼ ðh0; hx; hyÞ, and hi is
the component of the Hamiltonian proportional to the Pauli
matrix σi. However, for the collinear AFM both the Berry
curvature and the RCD are independent of the DMI, and the
system is topologically trivial. This follows from the fact
that the AFM LMCs depend on the sum ϵmk þ ϵnk
(cf. Table II), so that any dependence on D cancels. The
relation between χ and Ω further shows that the frequency-
integrated RCD of a collinear AFM vanishes. In the FM
limit B > Bs the Berry curvature and RCD are related
by Ω ¼ −χ=ð2a2d2kÞ þ ρk=ð2d3kÞ, where dk ¼ ðhx; hy; hzÞ
and ρk is a term linear inD. ForD=J ≲ 0.1 this term is small,
and the circular dichroism is approximately given by
χ ≈ −ð2a2Þ R dk d2kΩfðϵkÞ, where fðϵkÞ is the Bose-
Einstein distribution. For the typical low-temperature sce-
nario fðϵkÞ ¼ δðkÞ the circular dichroism vanishes, while at
finite temperature a nonzero value might be assumed.
Figure 2 shows the zero temperature RCD of the canted

AFM as a function of DMI, external magnetic field, and
photon energy. Clearly, the integratedRCD is closely related
to the Chern number of the magnon bands. It vanishes in
the topologically trivial state but is nonzero otherwise, and
thus constitutes an optical probe of the magnon band
topology in canted AFMs. In this sense the Berry curvature
determines the circular dichroism of a canted honeycomb
AFM in a manner strongly reminiscent of the relationship
between the circular dichroism and Berry curvature found in
electronic systems [48]. We note that to observe a finite
integrated RCD signal, both a finite (in-plane) antiferro-
magnetic and (out-of-plane) ferromagnetic order parameter

are needed. The former allows for optical generation of
magnons with finite momenta via pair creation processes,
while the latter guarantees that the magnon band structure is
topological. The decay of the RCD with increasing external
magnetic field is due to the suppression of pair creation
processes when approaching the ferromagnetic limit.
Figure 3 further shows that performing frequency-

resolved measurements of the RCD provides direct access
to the topological gap Δg at K. The dominant Raman
processes create magnon pairs at K=K0, and thus the RCD
is dominated by the Berry curvature at these points. Since
Ωþ ¼ −Ω− at K and K0 the RCD changes sign as ω

FIG. 2. Raman circular dichroism as a probe of magnon band
topology. (a) Chern number of the lower magnon band as a
function of Dzyaloshinskii-Moriya interaction D and external
magnetic field B. (b) Frequency-integrated Raman circular
dichroism χ. The parameters are Jxy ¼ Jz ¼ J ¼ 1, Bs ¼ 6JS,
and S ¼ 5=2.

FIG. 3. Raman circular dichroism, topological gap, and mag-
non Berry curvature. (a) Magnon band structure and density of
states as a function of magnetic field [see (b) for labels]. The
density of states is given in arbitrary units (a.u.). (b) Frequency-
resolved Raman circular dichroism χ as a function of
ℏω ¼ ℏωin − ℏωsc. (c) Magnon gap Δg at K and peak distance
ΔRCD of the Raman circular dichroism as a function of magnetic
field. (d) Two-magnon density of states ρ, density of states Λ
weighted by the magnon Berry curvature, and Raman circular
dichroism χ as a function of photon energy for B=Bs ¼ 0.5. In all
panels the parameters are Jxy ¼ Jz ¼ J ¼ 1, D=J ¼ 0.1,
Bs ¼ 6JS, and S ¼ 5=2.
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traverses the gap, and the distance ΔRCD between the
negative and positive peaks of the RCD gives a direct
measurement of the topological gap Δg. As the sign of the
Berry curvature is determined by the direction of the
magnetic field B, the RCD changes sign when the magnetic
field direction is inverted.
In addition to probing the topological gap, Fig. 2(d) shows

that the RCD gives a measure of the two-magnon density
of states (2DOS) weighted by the Berry curvature, defined
as Λ¼ΩαρααþΩβρββ, where ρμνðϵÞ¼

P
k δðϵ− ϵμ− ϵνÞ.

Assuming the 2DOS can be independently probed, the
shape of the RCD (peak width and intensity) provides
information about the k-space distribution of the magnon
Berry curvature. In particular, it shows that for the canted
AFM the main sources of Berry curvature are located at K
and K0, and that the Berry curvature changes sign between
the magnon bands.
We have shown that the magnon band topology of canted

antiferromagnets is probed by the circular dichroism of the
dominant two-magnon Raman scattering process. In par-
ticular, frequency-resolved RCD measurements give direct
access to the topological gap as well as to the k-space
distribution of the magnon Berry curvature, while the
integrated signal is tied to the Chern number of the magnon
bands. Since band topology in magnon systems is noto-
riously hard to validate, due to the bosonic exchange
statistics of the quasiparticles and the lack of a chemical
potential, these findings provide an important step toward
utilizing topological magnon excitations in functional
spintronics devices.
Our results are of relevance for a wide range of magnetic

insulators described by spin Hamiltonians such as Eq. (1).
These systems present diverse magnetic orders including
collinear out-of-plane ferromagnetism (monolayer CrI3,
CrCl3, and VI3), collinear out-of-plane and in-plane
AFM order (MnPS3 and MnPSe3, respectively), and zigzag
AFM order (FePS3, FePSe3, and NiPS3). A canted AFM
can thus be realized by applying an in-plane or out-of-plane
magnetic field to MnPS3 or MnPSe3, respectively. Out of
the abovementioned materials, CrI3 in particular has been
argued to display substantial out-of-plane DMIs of the
appropriate form [26,27]. More generally, we expect the
RCD to map out the Berry curvature of any system whose
topology is determined by a single Chern number. In
systems where the topology is governed by something
other than a single Chern number (e.g., multiple Chern
numbers or a Z2 invariant), the relation between the
magnon topology and the RCD is less clear. However,
as the frequency-resolved RCD is intimately connected to
the Berry curvature, it should still provide a strong
indication of a nontrivial magnon band topology.
To probe magnon topology via the RCD requires both a

finite integrated Berry curvature (i.e., the system is in a
topological state) and that magnons can be optically gen-
erated at finite momenta. For a given system one should

therefore checkwhether themagnetic order is described by a
spin Hamiltonian containing interactions that can generate a
nontrivial topology, and if the magnetic order allows
for a nontrivial topology and for magnon pair generation
at finite momenta. In the typical case this requires either
Dzyaloshinskii-Moriya or Kitaev interactions, as well as
some degree of noncollinearity in the magnetic order. We
note that the RCD has to vanish for a centrosymmetric
system (i.e., magnetic point groups including inversion
symmetry), while it is allowed for the class of gyrotropic
materials.
To establish the connection between the Raman circular

dichroism and the magnon Berry curvature we have derived
a general relation between the magnon LMCs and the
quantum geometric tensor. Utilizing this relation we have
shown that the magnon band topology of canted AFMs is
probed by the RCD. However, since these relations hold for
general quadratic boson Hamiltonians, our results pave the
way for probing the quantum geometry of diverse bosonic
quasiparticles such as magnons, photons, excitons, and
polaritons. In addition to probing magnon states, the two-
magnon Raman processes studied can be used to generate
magnons at the K and K0 points. Since this is where
topological edge modes are expected to appear in a finite
geometry, it is likely that such processes can be used to
generate magnon edge currents with tunable propagation
[40]. Our Letter thereby opens vast possibilities for
interfacing light and topological magnon modes in func-
tional spintronics devices.
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