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We introduce a new phase-field formulation of rapid alloy solidification that quantitatively incorporates
nonequilibrium effects at the solid-liquid interface over a very wide range of interface velocities.
Simulations identify a new dynamical instability of dendrite tip growth driven by solute trapping at
velocities approaching the absolute stability limit. They also reproduce the formation of the widely
observed banded microstructures, revealing how this instability triggers transitions between dendritic and
microsegregation-free solidification. Predicted band spacings agree quantitatively with observations in
rapidly solidified Al-Cu thin films.
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The past two decades have witnessed major progress in
modeling complex interface patterns that form during alloy
solidification. A major contributor to this progress has been
the advent of the phase-field (PF) method [1–5], which
circumvents front tracking by making the solid-liquid
interface spatially diffuse over some finite width ∼W,
and the development of quantitative PF formulations
[6–11] that have enabled simulations on experimentally
relevant length and timescales with a computationally
tractable choice of W on the pattern scale [12–18].
Morphological instability driving microstructural pat-

tern formation occurs over an extremely wide range of
solidification velocities V spanning 6 orders of magnitude
from μm=s to m=s, with different ranges of V relevant for
different solidification processes from conventional cast-
ing to metal additive manufacturing [19,20]. To date,
however, PF formulations to quantitatively simulate alloy
solidification patterns have been primarily developed and
validated for slow V [7,8], conditions under which the
solid-liquid interface can be assumed to remain in local
thermodynamic equilibrium. While there have been
attempts to extend quantitative modeling to rapid solidi-
fication, existing PF formulations have been limited to a
small departure from equilibrium [21], or have only
reproduced solute trapping in one-dimensional (1D)
simulations for larger V [22–25]. Simulating quantita-
tively far-from-equilibrium conditions, which is relevant
for a host of rapid solidification processes, has remained a
major challenge.
In this Letter, we develop a PF formulation to quanti-

tatively model dilute alloy solidification under far-from-
equilibrium conditions with a computationally tractable
choice of W on the pattern scale. The model incorporates
well-known nonequilibrium effects, including solute trap-
ping characterized by V-dependent forms of the partition

coefficient kðVÞ and liquidus slope mðVÞ and interface
kinetics. Simulations reproduce the formation of banded
microstructures [26–35] with a band spacing that is in
remarkably good quantitative agreement with observations
in thin-films of rapidly solidified Al-Cu alloys [35]. They
further reveal that steady-state dendritic array growth is
terminated by a novel dendrite tip instability driven by
solute trapping that initiates banding.
PF models have been shown to reproduce solute trapping

properties [22–25,36,37], quantitatively for a physical
choice of interface thickness W0 ∼ 1 nm. Computations
on a microstructural length scale, however, generally
require choosing the interface thickness in the PF model,
W ≫ W0, thereby producing spurious excess trapping. For
the low-velocity solidification regime, this problem has
been circumvented by the introduction of an antitrapping
current that eliminates excess solute trapping to restore
local equilibrium at the interface [7,8]. The form of this
current has been modified to also model a moderate
departure from equilibrium [21,38]. However, a quantita-
tive approach remains lacking to describe far-from-
equilibrium phenomena such as banding. Here, we follow
a different approach where excess trapping resulting from
the computational constraint S≡W=W0 ≫ 1 is compen-
sated by enhancing the solute diffusivityDðϕÞ≡DlqðϕÞ in
the spatially diffuse interface region. We show that,
remarkably, simple forms of qðϕÞ can be used to reproduce
quantitatively the desired velocity-dependent forms of kðVÞ
andmðVÞ over a several orders of magnitude variation of V
from near [kðVÞ → ke where ke is the equilibrium value of
the partition coefficient] to far from [kðVÞ → 1] equilib-
rium conditions. This approach has the advantage that it
can be implemented in a variational formulation of the PF
evolution equations that can be readily extended to general
binary or multicomponent alloys.
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We present the model for the simplest case of a dilute
binary alloy where the evolution equations
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are derived variationally from the free-energy functional
introduced in [36] and defined here by Eqs. (S3)–(S6) in the
Supplemental Material [39]. Together with the relations
b≡ ln ke=2 < 0, τ0¼ðSW0Þ2=ðΓμ0kÞ, and λ ¼ a01bmeSW0=
½Γðke − 1Þ� > 0 between PF and materials parameters [36],
where Γ ¼ γ0TM=L is the Gibbs-Thomson coefficient, TM
is the melting point, L is the latent heat of melting, me > 0
is the equilibrium value of the liquidus slope, and
a01 ¼ SW0

R
∞
−∞ dxðdϕ0=dxÞ2 ¼ 2

ffiffiffi
2

p
=3, the choices of

interface width WðnÞ ¼ SW0asðnÞ and time constant
τðnÞ ¼ τ0asðnÞ2=akðnÞ model general anisotropic forms
of the excess free-energy of the solid-liquid interface
γðnÞ ¼ γ0asðnÞ and interface kinetic coefficient μkðnÞ ¼
μ0kakðnÞ, where n is the direction normal to the interface. In
addition, we use the common choice gðϕÞ ¼ 15ðϕ −
2ϕ3=3þ ϕ5=5Þ=8 that satisfies g0ð�1Þ ¼ g00ð�1Þ ¼ 0
and guarantees that the local minima of the free-energy
density remain at ϕ ¼ �1 for arbitrarily large thermody-
namic driving force.
For the one-sided model of alloy solidification, qðϕÞ ¼

ð1 − ϕÞ=2 is the simplest form that describes the physically
expected monotonous decrease of diffusivity from liquid to
solid across the interface. This form, however, produces
spurious excess trapping at lower V when S ≫ 1, since the
diffusive speed in the PF model Vd ∼Dl=W ∼ V0

d=S, where
V0
d ≡Dl=W0. Hence, to eliminate excess trapping, we use

the quadratic form qðϕÞ ¼ Að1 − ϕÞ=2 − ðA − 1Þð1 −
ϕÞ2=4 that enhances DðϕÞ in the interface region for
A > 1 [Fig. 1(a)].
We show next how this form of qðϕÞ can be used to

reproduce S-independent solute trapping properties. For
this, we look for steady-state PF and concentration profiles
corresponding to a planar isothermal interface moving at
constant velocity V. Those profiles are determined by
rewriting Eqs. (1) and (2) in a frame moving with the
interface at velocity V in the x direction
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where we have considered for simplicity the isotropic case
asðnÞ ¼ akðnÞ ¼ 1. Equation (4) can be simplified further
by integrating both sides once with respect to x and using
the boundary condition cð�∞Þ ¼ c∞ imposed by mass
conservation, yielding

dc
dx

¼ ðc∞ − cÞ V
DlqðϕÞ

þ bc
dgðϕÞ
dx

: ð5Þ

In addition, a self-consistent expression for the velocity-
dependent temperature is obtained by multiplying both
sides of Eq. (3) by dϕ=dx and integrating over x from −∞
to þ∞, yielding

TðVÞ ¼ TM −
bme

1 − ke

Z
∞
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þ a1bme
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τ0V
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where we have defined a1 ¼ SW0

R∞
−∞ dxðdϕ=dxÞ2. The

solution of Eqs. (3) and (5) with T given by Eq. (6) and the
boundary condition cð�∞Þ ¼ c∞ uniquely determine
the steady-state profile ϕðxÞ and cðxÞ. The “full solution”
to this system of equations is straightforward to obtain
numerically by a procedure that will be described in more
detail elsewhere. An “approximate solution” very close to
the full solution can also be obtained by assuming that the
PF profile for a moving interface remains close to its
stationary profile ϕ0ðxÞ ¼ − tanh ½x=ð ffiffiffi

2
p

WÞ�. In this
approximation, the concentration profile is solely deter-
mined by Eq. (5), which is readily solved by numerical
integration to obtain the concentration profiles shown in

FIG. 1. (a) Plots of qðϕÞ for S ¼ 1, 3, 5 (A ¼ 1, 6, 12), with
(b) corresponding PF ϕ ¼ ϕ0 and normalized concentration c̃ ¼
c=c∞ profiles obtained from the numerical solution of Eq. (5).
(c) kðVÞ and (d) mðVÞ functions obtained from the full (symbols)
and approximate (dashed lines) solutions (see text). The black
solid lines in (c) and (d) represent the CG model with coefficients
derived in the large-velocity asymptotic limit [39].
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Fig. 1(b). TðVÞ is then determined by Eq. (6) with those c
profiles and ϕðxÞ ¼ ϕ0ðxÞ. Finally, the corresponding
functions kðVÞ and mðVÞ are obtained from the sharp-
interface relations kðVÞ ¼ cs=cl and

TðVÞ ¼ TM −mðVÞcl − V=μk; ð7Þ

where cs and cl are the concentrations on the solid and
liquid sides of the interface, respectively, which correspond
here to c∞ and the peak value of cðxÞ. Matching the second
and third terms on the right-hand side of Eqs. (6) and (7),
yields at once

mðVÞ
me

¼ b
ð1 − keÞcl

Z
∞

−∞
dxg0ðϕÞc dϕ

dx
; ð8Þ

and μk ¼ μ0ka
0
1=a1, respectively. To obtain values of A that

yield S-independent trapping properties, we first compute
reference kðVÞ and mðVÞ curves corresponding to S ¼ 1
and A ¼ 1. For a given S > 1, we then compute kðVÞ and
mðVÞ curves for different A values and find the value of A
that minimizes the departure from the reference curves over
some large velocity range of interest. This procedure is
implemented with the approximate (ϕ ¼ ϕ0) solution and
yields A ¼ 6 and 12 for S ¼ 3 and 5, respectively, for
parameters of Al-Cu alloys [39]. Plots of kðVÞ and mðVÞ
obtained from the approximate (ϕ ¼ ϕ0) and full solutions
of the steady-state concentration and PF profiles are shown
for the different S and corresponding A values in Figs. 1(c)–
1(d), respectively. The approximate solution only depends
on ke and yields μk ¼ μ0k while the full solution depends on
the other alloy parameters, and the deviation of ϕ from ϕ0 at
larger V=V0

d causes a small quantitative difference between
the two solutions. Remarkably, even though a single
parameter A is optimized for each S, kðVÞ and mðVÞ are
seen to be nearly independent of S over a several orders
magnitude variation of V. Even though the concentration
profiles depend on S [Fig. 1(b)], they have almost identical
peak values, which determine kðVÞ, and the different profiles
also yield nearly identical values of mðVÞ via Eq. (8).
The kðVÞ and mðVÞ functions are compared to the

predictions of the continuous growth (CG) model as in
[22] by extracting the diffusive speed Vd from the asymp-
totic analytical solution of Eq. (5) for V ≫ V0

d and S ¼ 1,
assuming ϕ ¼ ϕ0, and concomitantly the solute drag
coefficient α from Eq. (8). This calculation yields Vd ≈
0.356V0

d lnð1=keÞ=ð1 − keÞ and α ≈ 0.645 [39]. Since the
PF model resolves the spatially diffuse interface region,
while the CG model is a sharp-interface description,
quantitative agreement between the two models over the
entire range of V for different ke is not generally expected,
even though agreement becomes almost perfect for larger
ke [39]. More than the PF and CG models comparison,
what is important here is that the PF kðVÞ and mðVÞ curves
for a realistic width (S ¼ 1) can be reproduced for a much

larger width (S ≫ 1) to make simulations on a micro-
structural scale feasible. Parameters of the PF model [e.g.,
W0 and the functions qðϕÞ and gðϕÞ] can, in addition, be
further adjusted to better fit desired kðVÞ and mðVÞ curves.
To validate our approach for such simulations, we model

the two-dimensional (2D) directional solidification of dilute
Al-Cu alloys. We consider first the standard frozen temper-
ature approximation (FTA) that neglects latent-heat rejection,
which corresponds to replacing ðT − TMÞ=me in Eq. (1) by
Gðx − x0 − VptÞ=me − c∞, whereVp is the pulling speed of
the sample,G is the externally imposed temperature gradient,
and x0 coincides with the equilibrium liquidus temperature
TL −mec∞. In addition, we consider anisotropic forms of
the excess interface free-energy asðθÞ ¼ 1þ ϵs cosð4θÞ, and
kinetic coefficient akðθÞ ¼ 1þ ϵk cosð4θÞ, with fourfold
symmetry, where θ is the angle between n and the x axis.
To investigate the convergence of the method, we first

focus on the velocity range below the onset of banding
where stable dendritic array structures are formed. This
allows us to compare, for different S, steady-state interface
shapes corresponding to a single dendrite obtained using
periodic boundary conditions in y, with the width of the
simulation domain along y equal to the primary dendrite
array spacing Λ (0.65 μm), chosen within the stable range
of Λ. This comparison in Fig. 2(a) shows that different S
yield nearly identical shapes, and the computation time is
reduced by 3 orders of magnitude for S ¼ 5 compared to
S ¼ 1 [39]. Results in Fig. 2(b) characterize steady-state
shapes by the tip radius Rtip and dimensionless tip
supersaturation Ω ¼ ðcl − c∞Þ=ðcl − csÞ. The latter is rel-
atively well described by the Ivantsov relation between Ω
and Péclet number RtipVp=ð2DlÞ [39]. Quantitative
differences between different S for larger Vp are likely
due to other effects, such as surface diffusion and interface
stretching known to affect pattern selection [7,8]. While
those effects can be eliminated in the framework of the thin-
interface limit for quasi-equilibrium growth conditions,
eliminating them for the entire V range of Figs. 1(c)–1(d) is

FIG. 2. (a) Comparison of steady-state interface shapes for
different S from 2D PF simulations of dendritic array growth for
Al-3 wt.% Cu, Vp ¼ 0.12 m=s, and G ¼ 5 × 106 K=m. (b) Tip
radius Rtip and (c) dimensionless tip supersaturation Ω versus S
for different Vp.
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considerably more challenging. Figure 2 shows that, even
with such effects present, the method converges already
reasonably well.
Next, we exploit the model to address basic open

questions of interface dynamics in this regime using S ¼
5 for efficiency. The first is how steady-state dendrite array
growth illustrated in Fig. 2(a) loses stability to trigger
banding as Vp approaches the absolute stability limit Va
defined implicitly by the relation [48–51]

Va ¼
DlmðVaÞc∞½1 − kðVaÞ�

kðVaÞ2Γ
; ð9Þ

where kðVÞ and mðVÞ are computed as before from the full
solution of the 1D PF Eqs. (3) and (5) with TðVÞ given by
Eq. (6), but with the substitutions SW0 → SW0ð1þ ϵsÞ and
τ0 → τ0ð1þ ϵkÞ in Eq. (3) to account for anisotropy. To
address this question, we performed a simulation in the
same geometry Fig. 2(a) but with Vp slowly increasing
linearly in time on a timescale much longer than the
characteristic time for the interface to relax to a steady-
state shape, thereby allowing us to probe pattern stability
over a large range of Vp. We find that above a critical
velocity Vc ≈ 0.88 m=s steady-state growth becomes
unstable as illustrated by the time sequence in Fig. 3(a).
This instability is highly localized at the dendrite tip and
triggers a rapid “burgeoning-like” growth of the interface.
Figure 3(b) shows that this abrupt acceleration of the
interface is accompanied by a rapid drop in cl associated
with almost complete solute trapping, followed by a rapid
deceleration of the interface and increase of cl as the
interface transits to a planar morphology and the diffusion
boundary layer rebuilds itself.
The onset velocity Vc of instability depends on the

anisotropy parameters ϵs and ϵk that are known to control
dendrite tip selection [52–55] and do not enter in the linear
stability analysis used to predict Va. However, for the
parameters of our simulations, Vc turns out to be close to
the value Va ≈ 0.86 m=s predicted by Eq. (9). Moreover,

the simulation of Fig. 3 was purposely carried out without
thermal noise to study the basic instability of steady-state
shapes. Additional simulations with noise-induced side-
branching reveal that the burgeoning instability can also
emerge from the tips of secondary branches, especially for
larger Λ that accommodates larger amplitude sidebranches.
Next, we investigate banding by using the FTA and the

method developed in [16] to include latent-heat rejection at
the interface. Figures 4(a)–4(c) show the microstructures
obtained with the FTA at three increasing values of Vp and
Fig. 4(d) shows the pattern obtained at the largest Vp with
latent heat for comparison. The oscillation cycles corre-
sponding to the FTA simulations of Figs. 4(a)–4(c) are
shown in the T-V plane of Fig. 4(e), where points along
each cycle represent the temperature and velocity of the
most advanced point along the solidification front at
subsequent instants of time.
Superimposed on the T-V plane are the steady-state

curves corresponding to stable dendritic array growth (red
curve) for V < Vc and planar front growth (blue curve)
computed using Eq. (7). The conceptual model of banding
derived in the FTA framework assumes that the interface
makes instantaneous transitions (1-2) and (3-4) between
those steady-state curves, and follows those curves during
the dendritic array (4-1) and planar front (2-3) growth
portions of the complete 1-2-3-4-1 banding cycle, where 1

FIG. 3. (a) Evolution of the solid-liquid interface illustrating the
burgeoning tip instability at Vp ¼ Vc ¼ 0.88 m=s for Al-3wt.%
Cu andG ¼ 5 × 106 K=m (see movie in [39]). (b) Corresponding
tip velocity V and scaled interface concentration c̃l ¼ cl=c∞ on
the liquid side.

FIG. 4. Microsegregation patterns (c̃ ¼ c=c∞ color maps)
simulated for Al-3wt.% Cu with G ¼ 5 × 106 K=m and the
FTA for Vp ¼ ðaÞ 0.46, (b) 0.64, and (c) 0.96 m=s, and with
latent heat for (d) Vp ¼ 0.96 m=s; black dashed lines mark
solidification front positions. (e) Steady-state curves and banding
cycles in the T-V plane. Movies corresponding to (a) and (d) are
shown in the Supplemental Material [39].
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corresponds to Va and 3 corresponds to the maximum of
the TðVÞ curve for steady-state planar front growth. The
simulated banding cycle of Fig. 4(a) follows reasonably
well this conceptual cycle when microsegregated and
microsegregation-free bands corresponding to dendritic
array and planar front growth, respectively, are of compa-
rable width, while the cycles of Figs. 4(b)–4(c) make larger
loops in the T-V plane when planar front growth occupies a
larger fraction of the whole banding cycle that is no longer
constrained to follow the 4-1 segment corresponding to
steady-state dendritic array growth.
The comparison of Figs. 4(c) and 4(d) shows that latent-

heat rejection dramatically reduces the band spacing from
about 2 μm to 500 nm. Latent heat was previously found to
reduce the period of oscillations of the planar interface
[56,57], but those 1D cycles could not predict banded
microstructure formation. Figure 4(d) reveals that bands
grow at a small angle with respect to the thermal axis due to
the fact that the lateral spreading velocity of the interface
that produces microsegregation-free bands is slowed down
by latent-heat rejection. The banding cycle is shrunk and no
longer easily represented by the path of a uniquely defined
solidification front in the T-V plane as for FTA.
Finally, we show in Fig. 5 a quantitative comparison of

banded microstructures simulated with latent heat and
produced in a resolidification experiment where a short
laser pulse is used to create an elliptical melt pool in a thin
film of an Al-9 wt.% (Al-4 at.%) Cu alloy [35]. Based on
dynamic transmission electron microscopy (DTEM) mea-
surements of interface velocity, Vp was increased in the
simulation linearly from 0.3 to 1.8 m=s over a time period
30 μs. As shown in Fig. 5, the band spacing in simulation
(∼400 nm) agrees remarkably well with the experiment.
Simulations for other alloys (e.g., Al-Fe) also yield a good
agreement with previous experimental observations of
banded microstructures in laser remelting experiments
[26–32]. They will be presented elsewhere in a longer
exposition of methods and results.
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