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A pair density wave (PDW) is a superconductor whose order parameter is a periodic function of space,
without an accompanying spatially uniform component. Since PDWs are not the outcome of a weak-
coupling instability of a Fermi liquid, a generic pairing mechanism for PDW order has remained elusive.
We describe and solve models having robust PDW phases. To access the intermediate coupling limit, we
invoke large-N limits of Fermi liquids with repulsive BCS interactions that admit saddle point solutions.
We show that the requirements for long-range PDW order are that the repulsive BCS couplings must be
nonmonotonic in space and that their strength must exceed a threshold value. We obtain a phase diagram
with both finite temperature transitions to PDWorder and a T ¼ 0 quantum critical point, where non-Fermi
liquid behavior occurs.
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Introduction.—A pair density wave (PDW) is a rare and
exotic superconductor in which pairs of electrons condense
with nonzero center of mass momentum [1]. Similar phases
of matter were conceived decades ago by Fulde, Ferrel,
Larkin, and Ovchinnikov (FFLO), in the context of spin-
polarized superconductivity [2–7]. In addition to exhibiting
the usual properties of superconductors, PDWs break
translation symmetry and are therefore accompanied by
charge modulation. PDW order is believed to occur in a
variety of correlated electron materials [8–18], in cold atom
systems [19–21]. More recently, they have been observed in
the iron based superconductor EuRbFe4As4 [22], the heavy
fermion superconductor UTe2 [23], as well as the kagome
metal CsV3Sb5 [24]. In the absence of fine-tuning (e.g.,
perfectly nested Fermi surfaces in the particle-particle
channel [25–30]), PDWs do not stem from a weak-coupling
instability of a Fermi liquid, and robust mechanisms of
PDW formation have therefore remained elusive, despite
intense efforts [14,31–41].
It is easy to see why PDW order requires intermediate

coupling. In a clean Fermi liquid with inversion and/or
time-reversal symmetry, the static pair susceptibility is a
positive-definite quantity that diverges logarithmically
only at zero center of mass momentum q ¼ 0, reflecting
the celebrated BCS instability. Away from q ¼ 0, the
logarithmic divergence is cut off, and pairing with q ≠ 0
requires a finite interaction strength. Therefore, many
proposed mechanisms for FFLO superconductivity have
relied on shifting the large pair susceptibility away from
q ¼ 0, say by the application of a Zeeman field [2,3], or,
say, by considering the effects of Rashba spin-orbit effects
on odd parity superconductivity [42]. By contrast, we wish
to ask whether there can be an intrinsic mechanism for

PDW order, which requires only the existence of sizable
interactions.
In this Letter, we study various models of Fermi liquids

in the presence of repulsive BCS interactions. We solve
such theories beyond the weak-coupling regime by appeal-
ing to a large-N limit whose saddle point corresponds to a
self-consistent set of solutions for the propagators of the
theory. From these solutions, we deduce the existence of
both finite temperature continuous transitions to PDW
order as well as a quantum critical point (QCP) at T ¼ 0
separating a Fermi liquid metal from a PDW. Our analysis
leads to robust pairing mechanisms in d > 1 of PDWorder
in a variety of continuum and lattice systems. Despite such
robustness, we find that PDW order emerges from physi-
cally reasonable microscopic models only under special
circumstances, which we precisely outline below. This
perhaps accounts in part for why PDW order is so rare in
real materials.
Model and method of solution.—Wewill study the fate of

a Fermi liquid subject to a finite repulsive singlet BCS
interaction:

Hpair ¼
X
ij

Vijb
†
i bj; bi ¼ ci↓ci↑: ð1Þ

In a translationally invariant system, Vij ¼ Vðri − rjÞ, and
the interaction above can equivalently be expressed in
momentum space as Hpair ¼

P
q VðqÞb†qbq.

We decouple the above interaction using an auxiliary field
ϕ, which corresponds to a charge 2e pair field. The bare
Euclidean Lagrangian density then consists of the metal,
the pair fields, and a Yukawa coupling between them:
L ¼ Lf þ Lb þ Lg, where
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Lf ¼
X
σ¼↑;↓

Z
y
ψ†
σðxÞG−1

0 ðx − yÞψσðyÞ;

Lb ¼
Z
y
ϕ†ðxÞD−1

0 ðx − yÞϕðyÞ;

Lg ¼ ηg½ϕ†ðxÞψ↑ðxÞψ↓ðxÞ þ ϕðxÞψ†
↓ðxÞψ†

↑ðxÞ�: ð2Þ

x ¼ ðx; τÞ, η ¼ 1ðiÞ corresponds to attractive (repulsive)
BCS couplings parametrized by a dimensionless coupling g
(for the repulsive case, see Ref. [43] for details), and G0 and
D0 are, respectively, the bare fermion and boson propagators
in the decoupled limit g ¼ 0 (i.e., D0 is proportional to the
Fourier transform of the inverse ½VðqÞ�−1).
The theory above can be solved for arbitrary g by

considering a formal extension to large-N limit where
the fermion and boson fields are promoted to N component
vectors that transform in the fundamental representation of
a global SUðNÞ flavor symmetry group. The coupling
between the fields is promoted to an all-to-all random
Yukawa coupling in the space of flavors:

Lg → η
X
kml

�
gkml

N
ψk↑ðxÞψm↓ðxÞϕ†

lðxÞ

þ g�kml

N
ψ†
m↑ðxÞψ†

k↓ðxÞϕlðxÞ
�
; ð3Þ

where the quenched random Yukawa couplings are spa-
tially independent and are chosen from a Gaussian unitary
ensemble with variance gkmlg�k0m0l0 ¼ g2δkk0δmm0δll0 and
with zero average. The global SUðNÞ symmetry is thus
only preserved on average. In terms of the original
fermionic operators, this extension corresponds to the
interaction of the form

Hpair ¼
X
ij

Vij

X
l

b†liblj; bli ¼
X
km

gkml

N
cki↓cmi↑: ð4Þ

Using by now standard saddle point methods [44–48], the
exact solution of the large-N theory consists of self-
consistent propagators G, D with associated self-energies
Σ, Π:

ΣðkÞ ¼ −g2
X
q

sgn½VðqÞ�Gð−kþ qÞDðqÞ;

ΠðqÞ ¼ −g2sgn½VðqÞ�
X
k

GðkÞGð−kþ qÞ;

GðkÞ ¼ ½G−1
0 ðkÞþΣðkÞ�−1; DðqÞ ¼ ½D−1

0 ðqÞ−ΠðqÞ�−1:
ð5Þ

Here, k ¼ ðk; iωnÞ and q ¼ ðq; iΩmÞ, where ωnðΩmÞ are
fermion (boson) Matsubara frequencies. The sign function
sgn½VðqÞ� originates from the factor η introduced in Eq. (2).
From the exact propagators G, D, we extract all the salient
physics, to obtain the schematic phase diagram in Fig. 1. For
instance, to identify the finite temperature PDW transitions
shown in Fig. 1, we need only consider the static bosonic
propagatorDðqÞ. The effective Ginzburg-Landau theory for
the fields ϕ will have a quadratic term whose coefficient is
given by D−1ðqÞ. To study the manner in which the order
parameter grows below the PDW transition, we again study
the static bosonic propagators but now with the inclusion of
nonlinear effects stemming from a nonzero vacuum expect-
ation value of ϕ. Finally, we will describe the PDW QCP
and find the non-Fermi liquid behavior for the fermions.
Fluctuating PDW order.—We first show that when the

interaction VðrÞ is monotonic, e.g., VðrÞ ∼ e−r=ξ, the PDW
order is absent for any g. The Fourier transform VðqÞ
defines the bare inverse boson propagator, which is purely
static, and takes an Ornstein-Zernike form: D−1

0 ðqÞ ¼
rþ c2q2, with r > 0. To see why the theory fails to host
long-range PDW order, consider the limit q=2kF ≪ 1, in
which the saddle point solution for the exact static
propagator D at T ¼ 0 can be analytically obtained:

D−1ðqÞ ¼ rþ c2q2 þ g2ν log

�
4ωD

vFq

�
; ð6Þ

where the last term above is the contribution from the q ≪
kF limit of the static pair susceptibility, ωD is a cutoff, and ν
is the density of states at the Fermi level. Even at T ¼ 0,
D−1ðqÞ remains positive, indicating the absence of a phase
transition. Nevertheless, the minimum of D−1ðqÞ is at
nonzero jqj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2ν=2c2Þ

p
, indicating softened pair fluc-

tuations at finite momentum. Figure 2 shows D−1ðqÞ for
various strengths g2. With increasing g2, the theory is
driven further away from ordering, eventually having a
correlation length short compared to the wavelength of the
putative PDW—thus, a failed PDW. We next show that
long-ranged PDW order occurs when the repulsive BCS
couplings are nonmonotonic in space.

FIG. 1. Phase diagram obtained from the large-N model. At
T ¼ 0, there is a QCP separating the PDW phase and the normal
metallic state. The PDW transition temperature Tc scales linear in
g2 in strong-coupling limit. Above the QCP, fluctuation of PDW
gives rise to non-Fermi liquid behavior.
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PDWs from nonmonotonic BCS interactions.—As an
illustrative example, consider the case where the BCS
coupling is nonzero only at a distance r0:

VðrÞ ¼ g2δðr − r0Þ; VðqÞ ¼ 2πr0g2J0ðqr0Þ; ð7Þ

where J0ðxÞ is the zeroth Bessel function. Although VðrÞ is
repulsive, its Fourier transform VðqÞ is an oscillatory
function with both repulsive and attractive components
[Fig. 3(a)]. The exact boson propagator in this case is

D−1ðqÞ ¼ 1

2πr0jJ0ðqr0Þj
þ g2sgn½VðqÞ�ΠðqÞ: ð8Þ

To make sense of the above equation, we can approximate
the boson self-energy ΠðqÞ by the one-loop calculation
Π0ðqÞ obtained using G0. The result is shown in Fig. 3(b).
Clearly we see that when VðqÞ < 0, the associated Fourier
components of D−1ðqÞ get smaller (i.e., closer to an
ordering transition) as g2 increases whereas the repulsive
components get larger. Nonetheless, the phase transition
will not occur unless g2 exceeds a threshold value. In
Fig. 3(c) we present the numerical results of D−1ðqÞ by
solving the full saddle point equations (5) on a 32 × 32
momentum mesh grid. The global minimum (dashed circle)
of D−1ðqÞ indeed vanishes when T approaches Tc. Thus,
there is a line of finite temperature phase transitions Tcðg2Þ
as g2 is varies, obtained by the condition D−1ðqÞ ¼ 0. For
T > Tc, the minimum value of D−1ðqÞ forms a ring as is
expected from the toy model, but stays positive. Once T
approaches Tc, its minimum vanishes, indicating the PDW
instability. Similarly, if we fix T instead and increase g2, we
can also see D−1ðqÞ vanishes at some finite g2. In Fig. 3(d)
we present Tc and a function of g2. At large g2, our result
clearly shows a linear relation between Tc and g2. The line
of finite temperature transitions terminates at a T ¼ 0 phase
transition at g ¼ gc.
Below the ordering transition, we must solve the self-

consistent equations allowing for a nonzero expectation
valueΔðqÞ ¼ hϕðqÞi. Details of our calculation are provided

in Ref. [43]. Figure 3(e) showsΔðqÞ as a function ofT below
Tc. Within the accuracy of the numerical solutions, the
expectation value grows continuously, indicating that the
finite temperature transitions are second order and are well
described by mean-field theory. From the solution of the
nonlinear equations, we can also determine the ordering
wave vector Q of the PDW by minimizing D−1ðqÞ with
respect to momentum:

Q∶
d
dq

D−1ðqÞjQ ¼ 0: ð9Þ

In the neighborhood of Q, D−1ðqÞ takes the form
D−1ðqÞ ¼ γðjqj −QÞ2, where γ ¼ 1

2
ðd2=dq2ÞD−1ðqÞjq.

Lattice models with PDW order.—Emboldened by the
simplified model above, we consider a more realistic
example of electrons on a square lattice with nearest
neighbor hopping t ¼ 1, on-site Hubbard U, and second
neighbor pair hopping J:

FIG. 2. D−1ðqÞ in the zero temperature limit obtained from
Eq. (6). Here we set c2=r ¼ 0.5, ν=r ¼ 0.1, and the momentum is
measured in units of 4ωD=vF.

FIG. 3. (a) VðqÞ as a function of jqjr0 with r0 ¼ 1 from Eq. (7).
(b) D−1ðqÞ at T ¼ 0.05 as a function of jqjr0 (also with r0 ¼ 1)
obtained by approximating ΠðqÞ in Eq. (8) by its one-loop
calculation. (c) Density plot ofD−1ðqÞ as a function of q obtained
by numerically solving the full saddle point equations in Eq. (5)
with r0 ¼ 3. The two panels show the results for T above Tc and
right at Tc, and the dashed circles mark the minimum of D−1ðqÞ.
(d) Tc as a function of g2. At large g2, our result indicates that Tc

scales linearly in g2. (e) The magnitude of ΔðqÞ below Tc for a
given g2 ¼ 0.45. The energy scale here is measured in units of the
Fermi energy EF.
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H¼−t
X
hi;ji;σ

c†iσcjσþU
X
i

ni↑ni↓þJ
X
hi;ji

c†i↑c
†
i↓cj↓cj↑; ð10Þ

where i, j above label lattice sites. The model above
can similarly be N enhanced and the resulting saddle point
solutions can be solved mutatis mutandis. In this case, the
Fourier transform of the BCS interaction VðqÞ is VðqÞ ¼
U þ 2Jðcos qx þ cos qyÞ and g2 ¼ U=t. As long asU < 4J,
VðqÞ can be negative at some finite q. We solve Eq. (5) with
the fermion dispersion replaced with ξk ¼ −2tðcos kxþ
cos kyÞ − μ. The results are shown in Fig. 4. In this case,
we have four symmetry-related ordering vectors at
ð�π;�πÞ þOðUt=JEFÞ, that depend on the strength of
interactions and the filling. In this sense, the pairing state
from the large-N theory is different from the η-pairing state
found in numerical studies of one-dimensional analogs of
such models [31,49–52].
PDW quantum critical point.—Both the lattice and

continuum models above have finite temperature continu-
ous PDW transitions that terminate at the QCP. We can
study the fate of itinerant fermions around this T ¼ 0
transition by solving the self-consistent set of equations in
Eq. (5). A straightforward computation of the one-loop
boson self-energy in the regime q ≪ kF yields (see
Supplemental Material [43]) Πðq; iΩmÞ ¼ ν½lnð4ωD=
vFjqjÞ − ðjΩmj=vFjqjÞ�. It then follows that in the limit
q ≪ kF,

DðqÞ−1 ≈ γðjqj −QÞ2 þ g2νjΩmj
vFQ

; ð11Þ

resulting in a boson dynamical exponent zb ¼ 2. A fully
self-consistent solution is obtained by computing the
fermion self-energy using DðqÞ above. Performing the
integrals in the zb ¼ 2 scaling limit (see Supplemental

Material [43]), we obtain G−1ðk; iωnÞ ¼ G−1
0 ðkÞ þ ΣðωnÞ,

where

ΣðωnÞ ¼ isgnðωnÞω1=2
0 jωnj1=2; ω0 ¼

g2Q
π2vFγ

: ð12Þ

The expressions for G,D are now fully self-consistent: upon
feeding back the fermions to the boson, Π is unchanged.
Thus, superconducting fluctuations are Landau overdamped
and the fermions are dressed into a non-Fermi liquid. If,
following Hertz [53], we were to integrate out the fermions,
the bosonic sector would be at its upper critical dimension
defined by dþ z ¼ 4, when d ¼ 2. Thus, up to logarithmic
corrections to scaling, the ordering transition has mean-field
exponents, with ν ¼ 1=2. The line of finite temperature
transitions emanates from the quantum critical point as
Tcðg2Þ ∼ ðg2 − g2cÞνz, with unit exponent νz ¼ 1. Note that
in our toy model Eq. (7), the PDW ordering vector forms a
ring, which renders the whole Fermi surface to be a “hot
region” [54]. However, in the lattice model where there are
only limited number of ordering vectors, there are only finite
“hot spot” regions on the Fermi surface which has non-Fermi
liquid behavior.
Discussion.—We have shown that PDW order arises

unambiguously when electrons have sufficiently large repul-
sive and nonmonotonic BCS interactions. Interactions in the
particle-hole channel can certainly destabilize the theory
presented here. However, since ordering tendencies in the
particle-hole channel require finite interaction strength, we
expect our theory to remain robust, at least to the addition of
weak interactions in the particle-hole channel [56]. Other
possibilities include Kohn-Luttinger superconductivity,
which also arises from repulsive interactions. However,
such states are not present in the large-N limit considered
here, and are moreover at exponentially low temperature
scales; by contrast, the PDW transitions occur at scales that
exhibit power law dependence in the bare interactions of the
system.
We speculate on the relevance of these results to real

solids. In microscopic descriptions of solids, pair-hopping
interactions are typically small compared to density-density
interactions [57,58]. This is not true, however, in low energy
effective descriptions, obtained from integrating out short-
distance modes.We have concentrated on such pair-hopping
terms in this Letter, since they give rise to site PDWorders,
where each fermion of the Cooper pair “lives” on the same
lattice site. Similar mechanisms can give rise to bond PDW
order, where the pair is built from fermions separated by a
nearest neighbor distance. In this case, the repulsive BCS
interactions giving rise to PDW order are the more physi-
cally relevant density-density interactions, which are always
sizable in any solid. Indeed, such density-density inter-
actions can give rise to PDWorder on the kagome lattice, as
suggested in Ref. [59].

FIG. 4. Numerical solution ofD−1ðqÞ from Eq. (10) obtained at
a fixed T ¼ 0.05 with J ¼ 2U for different fillings. In the left-
hand panel there are n ¼ 0.71 electrons per site, and D−1ðqÞ
touches zero at g2 ¼ 0.75. In the right-hand panel there are n ¼
1.17 electrons per site, and g2 ¼ 1.8 is the critical coupling where
D−1ðqÞ touches zero. The black dots mark the positions of the
ordering vector Q near ð�π;�πÞ, which leads to the PDW with
checkerboard pattern in real space.
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In addition, it is somewhat unusual to expect a relatively
suppressed BCS repulsion at short distances. This require-
ment accounts at least in part for why PDW order is so
seldom found in real materials. For the case of bond PDW
order, Coulomb repulsion, in conjunction with strong
coupling to Holstein phonons, can provide such nonmono-
tonic density-density interactions. This may account for
recent studies of Hubbard-Holstein ladders reporting PDW
order [60,61]. A promising system for realizing the con-
ditions outlined here for PDW formation is electrons on a
kagome lattice near the van Hove singularity. In this
regime, the electrons have a peculiar property that short-
distance Coulomb interactions are suppressed relative to
nearest neighbor repulsion [62]. As a result, short-distance
repulsive forces are suppressed relative to nearest neighbor
repulsion, which is precisely the requisite condition for
PDWorder identified here. A recent study along these lines
has shown that PDW order naturally arises at intermediate
coupling on the kagome lattice [59]. We shall investigate
the relevance of these findings to the phase diagram of
kagome metals such as CsV3Sb5 in future studies.
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systems, arXiv:2207.11468.

[31] B. Bhattacharyya and G. K. Roy, The ground state of the
Penson-Kolb-Hubbard model, J. Phys. Condens. Matter 7,
5537 (1995).

[32] J. Wårdh and M. Granath, Effective model for a super-
current in a pair-density wave, Phys. Rev. B 96, 224503
(2017).

[33] J. Wårdh, B. M. Andersen, and M. Granath, Suppression of
superfluid stiffness near a Lifshitz-point instability to finite-
momentum superconductivity, Phys. Rev. B 98, 224501
(2018).

[34] E. Berg, E. Fradkin, and S. A. Kivelson, Pair-Density-Wave
Correlations in the Kondo-Heisenberg Model, Phys. Rev.
Lett. 105, 146403 (2010).

[35] F. Loder, A. P. Kampf, and T. Kopp, Superconducting state
with a finite-momentum pairing mechanism in zero external
magnetic field, Phys. Rev. B 81, 020511(R) (2010).

[36] F. Loder, S. Graser, A. P. Kampf, and T. Kopp, Mean-Field
Pairing Theory for the Charge-Stripe Phase of High-Tem-
perature Cuprate Superconductors, Phys. Rev. Lett. 107,
187001 (2011).

[37] C. Setty, L. Fanfarillo, and P. J. Hirschfeld, Microscopic
mechanism for fluctuating pair density wave, arXiv:
2110.13138.

[38] C. Setty, J. Zhao, L. Fanfarillo, E. W. Huang, P. J.
Hirschfeld, P. W. Phillips, and K. Yang, Exact solution
for finite center-of-mass momentum cooper pairing, arXiv:
2209.10568).

[39] H.-C. Jiang, Pair density wave in doped three-band Hubbard
model on square lattice, arXiv:2209.11381.

[40] J.-T. Jin, K. Jiang, H. Yao, and Y. Zhou, Interplay between
Pair Density Wave and a Nested Fermi Surface, Phys. Rev.
Lett. 129, 167001 (2022).

[41] Z. Han and S. A. Kivelson, Pair density wave and reentrant
superconducting tendencies originating from valley polari-
zation, Phys. Rev. B 105, L100509 (2022).

[42] Y. Yu, V. Madhavan, and S. Raghu, Majorana fermion arcs
and the local density of states of UTe2, Phys. Rev. B 105,
174520 (2022).

[43] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.026001 for details
about decoupling the BCS repulsion, as well as calculating
the pair susceptibility, nonlinear gap equation and fermion
self energy.

[44] I. Esterlis and J. Schmalian, Cooper pairing of incoherent
electrons: An electron-phonon version of the Sachdev-
Ye-Kitaev model, Phys. Rev. B 100, 115132 (2019).

[45] I. Esterlis, H. Guo, A. A. Patel, and S. Sachdev, Large-N
theory of critical Fermi surfaces, Phys. Rev. B 103, 235129
(2021).

[46] E. E. Aldape, T. Cookmeyer, A. A. Patel, and E. Altman,
Solvable theory of a strange metal at the breakdown of a
heavy Fermi liquid, Phys. Rev. B 105, 235111 (2022).

[47] A. A. Patel and S. Sachdev, Critical strange metal from
fluctuating gauge fields in a solvable random model, Phys.
Rev. B 98, 125134 (2018).

[48] Y. Wang, Solvable Strong-Coupling Quantum-Dot Model
with a Non-Fermi-Liquid Pairing Transition, Phys. Rev.
Lett. 124, 017002 (2020).

[49] C. N. Yang, η Pairing and Off-Diagonal Long-Range Order
in a Hubbard Model, Phys. Rev. Lett. 63, 2144 (1989).

[50] C. N. Yang and S. Zhang, So4 symmetry in a Hubbard
model, Mod. Phys. Lett. B 04, 759 (1990).

[51] A. Hui and S. Doniach, Penson-Kolb-Hubbard model: A
study of the competition between single-particle and pair
hopping in one dimension, Phys. Rev. B 48, 2063 (1993).

[52] G. I. Japaridze and E. Müller-Hartmann, Bond-located
ordering in the one-dimensional Penson–Kolb–Hubbard
model, J. Phys. Condens. Matter 9, 10509 (1997).

[53] J. A. Hertz, Quantum critical phenomena, Phys. Rev. B 14,
1165 (1976).

[54] Despite this peculiarity, fluctuation-induced first order
transitions along the lines of Ref. [55] are absent in the
large-N limit since all dynamically generated nonlinear
terms in the boson effective potential are 1=N suppressed.
Nevertheless, at finite N, we can argue against such first
order transitions if we view the toy model in the continuum
limit as applying to a dilute electron system on a lattice. In
this case, corrections to effective mass will lift the degen-
eracy and reduce the hot regions on the Fermi surface to hot
spots.

[55] S. A. Brazovskiı̆, Phase transition of an isotropic system to a
nonuniform state, Sov. J. Exp. Theor. Phys. 41, 85 (1975).

[56] H.-C. Jiang, Y.-M. Wu, and S. Raghu (to be published).
[57] S. Kivelson, W.-P. Su, J. R. Schrieffer, and A. J. Heeger,

Missing Bond-Charge Repulsion in the Extended Hubbard
Model: Effects in Polyacetylene, Phys. Rev. Lett. 58, 1899
(1987).

[58] J. Hirsch, Bond-charge repulsion and hole superconductiv-
ity, Physica (Amsterdam) 158C, 326 (1989).

[59] Y.-M. Wu, R. Thomale, and S. Raghu, Sublattice interfer-
ence promotes pair density wave order in kagome metals,
arXiv:2211.01388.

[60] K. S. Huang, Z. Han, S. A. Kivelson, and H. Yao, Pair-
density-wave in the strong coupling limit of the Holstein-
Hubbard model, npj Quantum Mater. 7, 1 (2022).

[61] Z. Han, S. A. Kivelson, and H. Yao, Strong Coupling Limit
of the Holstein-Hubbard Model, Phys. Rev. Lett. 125,
167001 (2020).

[62] M. L. Kiesel and R. Thomale, Sublattice interference in the
kagome Hubbard model, Phys. Rev. B 86, 121105(R)
(2012).

PHYSICAL REVIEW LETTERS 130, 026001 (2023)

026001-6

https://doi.org/10.1103/PhysRevB.92.035153
https://doi.org/10.1103/PhysRevB.94.075115
https://doi.org/10.1103/PhysRevB.94.075115
https://doi.org/10.1103/PhysRevLett.120.067003
https://doi.org/10.1103/PhysRevLett.120.067003
https://arXiv.org/abs/2203.05480
https://arXiv.org/abs/2207.11468
https://doi.org/10.1088/0953-8984/7/28/011
https://doi.org/10.1088/0953-8984/7/28/011
https://doi.org/10.1103/PhysRevB.96.224503
https://doi.org/10.1103/PhysRevB.96.224503
https://doi.org/10.1103/PhysRevB.98.224501
https://doi.org/10.1103/PhysRevB.98.224501
https://doi.org/10.1103/PhysRevLett.105.146403
https://doi.org/10.1103/PhysRevLett.105.146403
https://doi.org/10.1103/PhysRevB.81.020511
https://doi.org/10.1103/PhysRevLett.107.187001
https://doi.org/10.1103/PhysRevLett.107.187001
https://arXiv.org/abs/2110.13138
https://arXiv.org/abs/2110.13138
https://arXiv.org/abs/2209.10568
https://arXiv.org/abs/2209.10568
https://arXiv.org/abs/2209.11381
https://doi.org/10.1103/PhysRevLett.129.167001
https://doi.org/10.1103/PhysRevLett.129.167001
https://doi.org/10.1103/PhysRevB.105.L100509
https://doi.org/10.1103/PhysRevB.105.174520
https://doi.org/10.1103/PhysRevB.105.174520
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.026001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.026001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.026001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.026001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.026001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.026001
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.026001
https://doi.org/10.1103/PhysRevB.100.115132
https://doi.org/10.1103/PhysRevB.103.235129
https://doi.org/10.1103/PhysRevB.103.235129
https://doi.org/10.1103/PhysRevB.105.235111
https://doi.org/10.1103/PhysRevB.98.125134
https://doi.org/10.1103/PhysRevB.98.125134
https://doi.org/10.1103/PhysRevLett.124.017002
https://doi.org/10.1103/PhysRevLett.124.017002
https://doi.org/10.1103/PhysRevLett.63.2144
https://doi.org/10.1142/S0217984990000933
https://doi.org/10.1103/PhysRevB.48.2063
https://doi.org/10.1088/0953-8984/9/47/018
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevLett.58.1899
https://doi.org/10.1103/PhysRevLett.58.1899
https://doi.org/10.1016/0921-4534(89)90225-6
https://arXiv.org/abs/2211.01388
https://doi.org/10.1038/s41535-021-00417-3
https://doi.org/10.1103/PhysRevLett.125.167001
https://doi.org/10.1103/PhysRevLett.125.167001
https://doi.org/10.1103/PhysRevB.86.121105
https://doi.org/10.1103/PhysRevB.86.121105

