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We study synchronization in bulk suspensions of spherical microswimmers with chiral trajectories using
large scale numerics. The model is generic. It corresponds to the lowest order solution of a general model
for self-propulsion at low Reynolds numbers, consisting of a nonaxisymmetric rotating source dipole. We
show that both purely circular and helical swimmers can spontaneously synchronize their rotation. The
synchronized state corresponds to velocity alignment with high orientational order in both the polar and
azimuthal directions. Finally, we consider a racemic mixture of helical swimmers where intraspecies
synchronization is observed while the system remains as a spatially uniform fluid. Our results demonstrate
hydrodynamic synchronization as a natural collective phenomenon for microswimmers with chiral
trajectories.
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Introduction.—Microswimmers are a subset of active
matter systems and correspond to microscopic elements
self-propelling within a fluid environment. Natural micro-
swimmers consist of biological microorganisms [1–3]
and their collective dynamics has gained a lot of interest
of late [4–12]. This has inspired research on syn-
thetic microswimmers, typically based on phoretic Janus
particles [13–15]. The interest for developing artificial
swimmers has been fueled by the various promising
possibilities for applications such as microcargo trans-
portation [16–19], targeted drug delivery [19–22], artificial
insemination [19,23], and microsurgery [19,20,24–26].
Most theoretical studies of microswimmer suspensions

have concentrated on particles that swim in straight lines,
with simulations predicting the spontaneous formation of
collective swimming along a common direction—uniform
polar order [27–33]. However, microorganisms typically
have intrinsic chirality and tend to swim along helical
paths [34–44]. Similarly, any asymmetry due to imperfec-
tions in the shape of the colloids or in their catalytic
coating would also lead to chiral motion for artificial
swimmers [13,45–48].
Continuum descriptions based on the long-range hydro-

dynamics produced by flow singularities [49–52] have
been extensively used in the past, with some works
including chiral flows [53–55]. However, these models
fail to capture near-field hydrodynamic effects, which
are believed to be crucial for the formation of polar
order [29,30].
Most of the current theoretical work of active particles

moving along chiral paths relies on dry microscopic
descriptions such as active Brownian particle (ABP)
models [56–65]. These effectively account for excluded
volume effects, but neglect hydrodynamic interactions.
Simulations of rotational dry models have predicted

large-scale synchronization, when a Kuramoto-type align-
ment term is included [57,66]. Very recently, work on the
hydrodynamics of chiral swimmers has started to emerge,
but has so far been limited to single and two particle
systems [67–72].
Explicitly incorporating chirality in hydrodynamic models

used to study microswimmer suspensions could have an
important effect regarding the emergence of collective states,
such as large-scale collective oscillations [73,74], polar
order [27–33] or hydrodynamic synchronization [75–81].
While synchronization arising from active flows has been
predicted for linear trimers [75] and for rotors on a two-
dimensional lattice [79], the ability of microswimmers to
spontaneously synchronize (or not) in freely moving bulk
suspensions, remains an open question.
Here, we show that swimmers with chiral trajectories can

synchronize their rotation in a fully three-dimensional
suspension. We consider finite sized swimmers, with a
surface slip-flow arising from the general solution for self-
propulsion at low Reynolds numbers [82], corresponding to
a rotating source dipole flow inclined at an angle ψ with
respect to the particle polar direction. A synchronized state,
corresponds to the alignment of these dipoles. We study
three distinct cases: circular swimmers, helical swimmers,
and a racemic mixture of left-handed and right-handed
helical swimmers. In all cases, the spontaneous formation
of synchronized states is observed.
Model for rotational squirmers.—To model the micro-

swimmers, we consider spherical particles of radius a, and
extend the standard squirmer model [83,84] to include
rotational slip flows. Based on Lamb’s general solution, the
tangential slip flow at the particle surface is given in
spherical coordinates by an infinite series of modes for the
polar and azimuthal components eθ and eφ [82]. The lowest
order modes correspond to self-propulsion (source dipoles
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and rotlets), while the higher order terms correspond to
fluid mixing. We choose [82,85]

uθjr¼a ¼ B1 sin θ þ B̃11 cos θ sinφ

uφjr¼a ¼ C1 sin θ þ B̃11 cosφ: ð1Þ

The B1 mode corresponds to the source dipole in the
standard squirmer model [top right panel in Fig. 1(a)]. C1

leads to a rotation of the particle around its polar axis z (or
m) with an angular velocity ω0 ¼ C1=a [bottom left panel
in Fig. 1(a)]. B̃11 corresponds to a source dipole along y
[bottom right panel in Fig. 1(a)]. The total swimmer flow
field corresponds to a single source dipole B with magni-

tude B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B̃2
11 þ B2

1

q

, which rotates around the polar axis

(m) at an inclination ψ ¼ jtan−1ðB̃11=B1Þj (Fig. 1). An
isolated particle has a swimming speed v0 ¼ 2

3
B. When

ψ ¼ 90° (B1 ¼ 0) the swimmers have circular trajectories
in a plane perpendicular to m (left in Fig. 1(b)). The radius
of the trajectory is given by rt ¼ 2B̃11a=ð3C1Þ and
the period by T0 ¼ 2π=ω0 ¼ 2πa=C1. For ψ ≠ 90° and
ψ ≠ 0° the trajectories become helical with pitch length
p ¼ 4πB1a=ð3C1Þ [right panel in Fig. 1(b)]. To character-
ize the helical swimming, we define the ratio λ≡ rt=p ¼
B̃11=ð2πB1Þ [85].
To study the collective dynamics of suspensions of N

swimmers, we use the lattice Boltzmann method [85]. The
typical particle Reynolds number is Re ∼ 0.01 with sim-
ulation times ∼100 s. (see Supplemental Material [85] for

details of simulations and mapping to SI units). An
orientationally ordered state, corresponds to the alignment
of the source dipoles B. The amount of alignment can be
measured by considering a velocity order parameter
PvðtÞ ¼ ðjPN

i v̂ij=NÞ, where v̂i ¼ vi=vi. To further quan-
tify the ordering, we measure the alignment along the
azimuthal s and polar m directions, by calculating
PsjmðtÞ ¼ ðjPN

i sijmij=NÞ. Pvjsjm ¼ 1 corresponds to
complete order, and 0 to an isotropic state.
Synchronization of circular swimmers.—Starting from

isotropic initial conditions, we find that circular swimmers
spontaneously synchronize their rotationwhenϕ ≈ 3…23%
and rt ≈ 2…5a (Fig. 2). The synchronization corresponds to
the spontaneous alignment of the particle velocities, with the
growth of both azimuthal and polar order, where typically
Ps ≈ Pm ≈ Pv ≳ 0.85 at long times [Fig. 3(a)]. The phase
locking is apparent from the distribution of the lag
angle α ¼ αs⊥1;2 calculated from all the particle pairs, con-
sidering the s vectors of two different rotors in the plane
perpendicular to the global polar director,PM ∼

P

N
i mi. The

distribution of α changes from uniform at t ≈ 0 to a normal
distributionwith a peak atα ≈ 0 in theglobally synchronized
state [Fig. 3(d)]. In this state, the particle trajectories
are circular and aligned perpendicularly to PM [right in
Fig. 3(e)]. The particle positions remain isotropic with the
pair-correlation functions gðrÞ, gðr⊥Þ, and gðrjjÞ showing
liquidlike structure [Fig. 3(b)].
The likelihood of the synchronization depends on the

volume fraction ϕ and the trajectory radius rt (Fig. 2). At
low ϕ the system remains in an isotropic state with the

FIG. 1. Model for rotational squirmers. (a) The surface slip
flows corresponding to the different modes: B1,C1, and B̃11 in the
particle frame. The magnitude of the normalized surface velocity
(slip flow) for each mode is represented by a color-code and the
streamlines are colored black. (b) The particle trajectories in the
lab frame, corresponding to circular (left) and helical (right)
swimming. The unit vectors m and s correspond to the particle
polar and azimuthal axes, respectively, and ψ is the inclination
angle with respect to m. (c) Swimmer flow field obtained from
the simulations, corresponding to a source dipole B (neutral
squirmer). The magnitude of the fluid velocity is coloured using a
logarithmic scale and overlaid by black streamlines.

FIG. 2. Synchronization diagram for circular swimmers
(ψ ¼ 90°) as a function of the volume fraction ϕ and particle
trajectory radius rt. Green circles indicate global synchronization,
and the red triangles mark isotropic states. The synchronization
region is colored according to a waiting time tsync=T0 corre-
sponding to the total time elapsed from the start of the simulation
until synchronization is reached. The white curve corresponds to
ϕ ¼ ϕ0

c½ð4=3πa3Þ=2πr2t a� with ϕ0
c ¼ 70%. (see text and Supple-

mental Material [85] for details).
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circular trajectories randomly oriented and distributed.
When ϕ is increased, the trajectories become jagged in
the isotropic state [left in Fig. 3(e)]. At long times the
trajectories align [right in Fig. 3(e)]. The distribution of
rotational frequencies ω has a peak at ω0 and the width
likely arises from the hydrodynamic fluctuations
[Fig. 3(c)]. Interestingly, the particle dynamics is reminis-
cent of the active-absorbing state transition predicted for
dry circular swimmers in two dimensions (2D) [62]—the
diffusive dynamics in the isotropic state becomes subdif-
fusive when the spontaneous synchronization occurs [85].
However, in the 2D dry system, where the particles interact
exclusively via steric collisions, only local synchronization
was observed [62]. This suggests that hydrodynamic
interactions are crucial for the large scale synchronization
observed here.

Previous studies of linear squirmers predict that the
alignment of source dipoles corresponding to the formation
of uniaxial polar order is dominated by near-field hydro-
dynamic interactions [29,30]. When rt ∼ a, an isolated
swimmer sweeps an area ∼r2t during one period T0, and can
be thought to occupy an effective volume 2πr2t a. The
lower-ϕ limit for the synchronization region, closely
corresponds to the random close packing of discotic
cylinders with volume 2πr2t a [85] (white line in Fig. 2).
Above this line, the effective volumes overlap in the
isotropic state, and the swimmers have a high probability
of interacting via near-field hydrodynamics.
To study the ordering dynamics, we measure the total

time tsync from the beginning of the simulation until
synchronization is reached. The fastest formation is
observed in the middle of the synchronized region
(Fig. 2). For a given rt, if ϕ is too large no synchronization
is observed. This implies the existence of a dynamic
bottleneck where the particles have multiple collisions
during their full-rotation time T0, hindering the growth
of global alignment. For simulations towards the high-ϕ
end of the synchronization region, tsync is increased (Fig. 2),
and the order parameters fluctuate close to zero before the
growth of the order begins.
Helical swimmers.—The helical swimmer trajectories

are characterized by the ratio between the radius of
curvature of the trajectory and the pitch length λ ¼ rt=p
[Fig. 1(b)]. The particle motion is three-dimensional,
leading to an increase of the probability of near-field
interactions. Hence, synchronization is observed at lower
ϕ than in the case of pure rotors (Figs. 2 and 4). Similarly to
circular swimmers, a high degree of order is observed in the

FIG. 4. State diagram for helical swimmers as a function ofϕ and
λ ¼ rt=p. The green circles correspond to global synchronization,
and red triangles to isotropic states. The blue diamonds mark polar
order for classic linear neutral squirmers and yellow diamonds
correspond to finite polar order in the absence of synchronization
for chiral swimmers. (data correspond to p ≈ 21a).

FIG. 3. (a) Circular swimmers: Example of a typical time
evolution of the azimuthal Ps (red), velocity Pv (blue), and polar
Pm (black) order parameters. (b) Radial distribution function gðrÞ
of the system at the beginning (gray) and at the end (black) of
the simulation. The gðr⊥Þ (gðrjjÞ) are calculated perpendicular
(parallel) to the polar director PM. Probability distribution of the
(c) angular velocities ω and (d) phase lag angle α between all
particle pairs, at the start and end of the simulation. (e) Snapshots
of 25 selected particles at the beginning (left) and end (right) of the
simulation. The particles are colored according to the y component
of their s vector. The trajectories are shown over one period and
colored according to the x component of the swimmer’sm vector.
(The data correspond to ϕ ≈ 0.15 and rt ≈ 3.33a).
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synchronized state [Figs. 5(a) and 5(b)], and the particles
swim along a common direction, with their helical trajec-
tories aligned [Fig. 5(c)]. Interestingly, when the ratio
B̃11=B1 is decreased, the ordering dynamics is observed
to change from a smooth growth to a two-step process
where the velocity alignment initially corresponds only to
alignment in the polar direction [see, e.g., Figs. 5(a) and
5(b), for λ ≈ 0.19 and λ ≈ 0.1, respectively]. Both the
rotational frequency and the phase locking show compa-
rable behavior to the circular swimmers [85].
When λ ¼ 0, the swimmers correspond to achiral neutral

squirmers and the formation of pure polar order ðPm > 0;
Ps ∼ 0Þ is observed (blue diamonds in Fig. 4) in agreement
with [27–33]. Remarkably, we also find cases with λ > 0
with stable polar order in the absence of azimuthal ordering
(Pm > 0; Ps ≈ 0) (yellow diamonds in Fig. 4).
The synchronization spans to low chiralities, and is

observed for λ ≈ 0.03…0.22 and ϕ ≈ 2.5…20% (Fig. 4).
The λ range corresponds to experimentally observed
trajectories of biological swimmers such as λ ¼ rt=p ≈
0.05 for T. thermophila [39] and λ ≈ 0.15 for the three-
dimensional swimming of sperm [40]. We note that the
transition between synchronized chiral states and the linear
polar state (λ ¼ 0) is predicted to occur between λ≲ 0.03
and λ ¼ 0 (Fig. 4). This suggests that synchronization may
well be observable at lower chiralities than λ ≈ 0.03
considered in Fig. 4.

Racemic mixture.—Finally, to study the effect of frus-
tration, we construct a racemic mixture composed of right-
handed and left-handed helical swimmers by choosing
C1 ¼ �0.001 (Fig. 6). We start from a fully mixed isotropic
state. At the steady state, the particles, on average, swim
along a common direction [Fig. 6(d)] and the rotational
frequency ω is observed to peak at ω0 [Fig. 6(a)]. The
intraspecies α shows strong phase locking [blue and red
curves in Fig. 6(b)], whereas for the cross species no
significant peak is observed [orange curve Fig. 6(b)], due to
the oppositely spinning populations. However, the distri-
bution shows a slight preference for α ¼ �π, which
corresponds to a parallel orientation of the in-plane
projections of the source dipoles [85]. Within the timescale
of the simulations, we observe no spatial separation of the
swimmers—the fluidlike pair-correlation function calcu-
lated within species and cross species matches with the gðrÞ
of the whole system [Fig. 6(c)].
Conclusions.—Using hydrodynamic simulations we

have investigated suspensions of microswimmers with
chiral trajectories at the limit of zero thermal noise. The
results suggest the emergence of hydrodynamic synchro-
nization as a naturally occurring collective phenomenon for
microswimmers. The predictions should be relevant to a
wide variety of experimental systems; such as helically
swimming bacteria [39] and sperm [40], or chiral Quincke
rollers [86] and spherical ciliates [87], where rotational
motion occurs naturally. The observation of the intra-
species synchronization in the racemic mixture, provides

FIG. 6. Racemic mixture: Distributions of the (a) spinning
frequency ω and (b) the phase-angle difference α calculated for
all swimmer pairs (black), for clockwise (blue) and counter-
clockwise (red) rotating populations, as well as for the cross
population (orange). (c) Total (black), homochiral (violet), and
heterochiral (orange) radial distribution functions. (d) Snapshot
of the unwrapped trajectories at the steady state after 20T0. (The
data correspond to ϕ ≈ 0.1 and λ ≈ 0.16).

FIG. 5. Helical swimmers: Time evolution of the order para-
meters Ps (red), Pv (blue), and Pm (black) for (a) ϕ ≈ 0.083,
λ ≈ 0.19, and (b) ϕ ≈ 0.125, λ ≈ 0.1. (c) Snapshots of the system
in the synchronized state. The uwrapped trajectories of all the
N ¼ 286 helical swimmers colored according to mx (left). 8
selected microswimmers with their trajectories colored as a
function of time (right). The particles are colored according to
sy. [The snapshots in (c) correspond to ϕ ≈ 0.15, λ ≈ 0.16].
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a surprising example of two synchronized, interpenetrating,
fluids. Further, it demonstrates that the synchronization is
maintained in the presence of hydrodynamic fluctuations
arising from the source-dipole 1=r3 far fields. This suggests
that it could be interesting to (re)analyze three-dimensional
correlations in the rotational degrees of freedom in systems
exhibiting polar order, such as areas of uniform order
in bacterial systems [4–12] or polar flocks in motile
colloids [88].
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