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1Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, E-08028 Barcelona, Spain
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We propose a mechanism for liquid formation in strongly correlated lattice systems. The mechanism is
based on an interplay between long-range attraction and superexchange processes. As an example, we
study dipolar bosons in one-dimensional optical lattices. We present a perturbative theory and validate it in
comparison with full density-matrix renormalization group simulations for the energetic and structural
properties of different phases of the system, i.e., self-bound Mott insulator, liquid, and gas. We analyze the
nonequilibrium properties and calculate the dynamic structure factor. Its structure differs in compressible
and insulating phases. In particular, the low-energy excitations in compressible phases are linear phonons.
We extract the speed of sound and analyze its dependence on dipolar interaction and density. We show that
it exhibits a nontrivial behavior owing to the breaking of Galilean invariance. We argue that an experimental
detection of this previously unknown quantum liquid could provide a fingerprint of the superexchange
process and open intriguing possibilities for investigating non-Galilean invariant liquids.
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Introduction.—Ultracold atoms in optical lattices might
serve as a quantum simulator of the Hubbard model that
plays a vital role in our understanding of strongly correlated
solid-state materials [1]. Particularly, the Hubbard model at
strong coupling displays superexchange processes which
can be employed to simulate different quantum magnetic
systems [2–6]. Moreover, the recent experimental progress
with atoms possessing strong magnetic moments, like Dy,
has led to the first realization of an extended Bose-Hubbard
model (EBH) in 3D [7] and 1D [8]. The addition of a long-
range potential to the interplay between on-site repulsion
and periodic confinement holds promise for exciting new
physics to emerge, e.g., quasilocalization [9,10] and unex-
pected topological phases [11,12].
The classical van der Waals theory of fluids states that

self-bound liquids exist due to the attractive finite-range
part of the interparticle interaction stabilized by the
repulsive short-range core [13]. Recently, a novel para-
digmatic quantum liquid has been observed in ultracold
systems that is simultaneously ultradilute and coherent
[14–21]. Contrary to the van der Waals mechanism, the
weakly interacting quantum gases undergo liquefaction due

to the zero-point energy fluctuations [22]—the so-called
Lee-Huang-Yang term [23–25]. Notably, quantum liquids
are even more robust in lower dimensions owing to an
enhanced role of quantum fluctuations for both two-
component and dipolar gases [26–34], while in classical
systems the van der Waals mechanism cannot prevent a
collapse of the classical system with long-range inter-
actions in lower dimensions. Interestingly, microscopic
foundations of quantum liquid formation for weakly
interacting Bose-Bose mixtures can be studied in one-
dimensional optical lattices [35,36].
In this Letter, we study an unconventional microscopic

mechanism of liquid formation for a system confined to a
one-dimensional optical lattice with strong on-site
repulsion—in the vicinity of the Tonks-Girardeau (TG)
limit—and long-range attraction. Notably, we show that the
appearance of superexchange processes liquefies the gas
state close to an insulator phase transition rendering a
quantum droplet for moderate and large system sizes.
Setup and model.—We consider a one-dimensional

system of ultracold dipolar bosons loaded to a deep optical
lattice comprisingNs sites. The corresponding Hamiltonian
is given by an extended Bose-Hubbard model,

Ĥ ¼
XNs

i¼1

�
U
2
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with hopping J, on-site interaction U, and dipolar strength
V. Importantly, it is possible to tuneU=J and V=J separately
in experiments with 1D optical lattices [37], e.g., by using
Feshbach resonances and adjusting the polarization angle of
the magnetic moment in the system. Thus, all the phases
considered should be accessible for future experiments with
Dy or Er atoms similar to existing state-of-art settings [8,37];
see the Supplemental Material [38]. A typical transverse
length of a trapping potential in current experiments with
ultracold gases σ⊥ ≈ 50 nm [37] is much smaller than a
typical lattice spacing a ≈ 500 nm. We thus use pure dipolar
interaction in 1D instead of the effective potential for quasi-
1D geometries, which includes corrections at distances of
the order of σ⊥ [51]. In the following, we study the ground
state of the system described by Hamiltonian (1) for large
values of the on-site repulsion (U=J ≫ 1) by developing
perturbation theory and performing numerical simulations.
Insulator instability.—We start by investigating an

impenetrable lattice TG gas (U=J → ∞) perturbed by
an attractive dipolar interaction (jVj ∼ J). We develop an
analytical theory by assuming a lattice TG state jψTGi at a
density n ¼ N=Ns and calculating the effective equation
of state (EOS) perturbatively as E ¼ hψTGjĤjψTGi. The
resulting energy per particle e≡ E=N reads e ¼ eJ þ eV ,
where

eJ ¼ −2J sinðnπÞ=ðnπÞ;

eV ¼ V

�
ζð3Þn −

ζð5Þ
2nπ2

þ 1

4nπ2
½Li5ðe2iπnÞ þ Li5ðe−2iπnÞ�

�
;

ð2Þ

indicate the kinetic energy of the fermionized bosons and
the dipolar interaction energy accordingly. We also intro-
duce the polylogarithm function LiβðnÞ of order β.
We classify the different phases of the system based on the

value of the equilibrium density n0, defined as the density at
which the energy per particle is minimal. The gaseous
(GAS) phase is characterized by a vanishing equilibrium
density n0 ¼ 0 and it appears for V < VBMI [52]. At the
critical value V ¼ VBMI, the minimum of the EOS jumps to
unit density n0 ¼ 1 signaling a first-order transition to an
insulator state. Furthermore, the insulator state has a lower
energy per particle than the free particle energy −2J. It is
thus a self-bound state, to which we refer to as a self-bound
Mott insulator (BMI). The threshold of the BMI state is
defined by the condition that the energy per particle at unit
filling equals the free energy per particle eðn ¼ 1Þ ¼ −2J,
giving the critical value of the long-range interaction
VBMI=J ¼ −2=ζð3Þ. BMI states are incompressible. Thus
in finite systems they become completely localized exhibit-
ing compact density profiles with a saturated density
corresponding to strictly one particle per site n ¼ 1 (see
Fig. 3). Although the density profile for these states bears
similarity to quantum droplets, quantum correlations are

completely suppressed in the BMI case (see Fig. 3).
Therefore, one should not consider them as genuine liquids.
In fact, they can be related to phase-separated states in spin
systems [53].
Importantly, lattice physics significantly differs from

what one expects to find in a continuous analog of the
described system. In the 1D continuum, the addition of
attractive dipolar interaction to TG gas leads to the collapse
of the system as the quantum fluctuations cannot compen-
sate for the diverging dipolar attraction. The feature of a
lattice is that it provides a natural regularization of the
problem since, for hard-core particles, the maximum
density allowed is fixed by the lattice spacing (n ≤ 1).
Note, however, that genuine self-bound droplets in the TG
limit for quasi-1D dipolar bosons, where the existence of
transverse structure regularizes short-range divergence,
were predicted recently [32].
Superexchange processes and liquefaction.—The

mechanism lying behind BMI formation is based on a
near cancellation between the effective repulsion coming
from the kinetic energy of lattice hard-core particles and the
long-range dipolar attraction. In the following, we study the
effects of relaxing the hard-core condition in our system.
We consider penetrable bosons with large but finite on-

site interaction U=J ≫ 1. We thus move away from the TG
limit that opens the possibility of next-to-nearest neighbor
hopping through a virtual intermediate process of two
bosons occupying the same site—the so-called superex-
change process. Explicitly, this extra contribution eU to the
total energy e can be derived using the effective fermionic
Hamiltonian within the second-order degenerate perturba-
tion theory [38,39], and it reads:

eU ¼ −
4J2

U
n

�
1 −

sinð2πnÞ
2πn

�
: ð3Þ

FIG. 1. Phase diagram for dipolar bosons in a one-dimensional
optical lattice. Different phases can be characterized by their
respective equilibrium densities n0. We encounter a gaseous
phase (GAS), a liquid one (LIQ), and a self-bound Mott-insulator
(BMI). Dashed and dot-dashed lines denote, respectively, LIQ-to-
BMI and GAS-to-LIQ transitions obtained in perturbation theory.
The dotted line indicates the threshold for a bound state (dimer) in
the two-body problem.
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Note that the superexchange correction effectively intro-
duces additional attraction of order J2=U ≪ 1 in the system
for all densities.
Remarkably, by inspecting the modified EOS of the

ground state, we encounter a gas-to-liquid transition close
to the BMI boundary owing entirely to the emerging
superexchange process, which diminishes on-site repul-
sion; see Fig. 1. The found liquid phase is characterized by
a negative energy per particle smaller than for the free case
E=N < −2J and a finite equilibrium density 0 < n0 < 1
(see Fig. 2). By increasing the attractive long-range
coupling, the density saturates with one particle per site,
and consequently, the system enters the BMI state.
Notably, the discovered mechanism of liquefaction in the

strongly correlated regime bears certain similarities with
the one vastly studied in the opposite limit of weak
interactions. As therein, quantum liquids appear due to
the subleading terms when dominating contributions of
opposite signs cancel each other [22]. Nonetheless, con-
trary to the Lee-Huang-Yang term as a small beyond mean-
field effect, the superexchange correlations occur for
strongly interacting systems well beyond the mean-field
applicability.
Equilibrium properties.—To benchmark the perturbative

EOS, we calculate the ground-state energy of Hamiltonian
(1) using the density-matrix renormalization group
(DMRG) algorithm; see Ref. [38]. We compute the ground
state for different strengths of the long-range interaction
V=J keeping fixed a large but finite on-site interactionU=J;
see Fig. 2. In the case of larger densities (n ≳ 0.8), an
excellent agreement is found for any value of the long-
range interaction, especially when approaching the unit
filling limit n ¼ 1 owing to suppressed quantum

correlations. For smaller densities (n≲ 0.5), the effective
EOS deviates significantly, as it does not include the
presence of few-body bound states. In DMRG simulations,
we always observe that the appearance of the liquid phase
coincides with the formation of a two-body bound state in
the system; see Fig. 1. Details on solving the two-body
problem are given in Ref. [38]. In the few-body limit, the
equation of state is well approximated by a lattice soliton
solution [54] ðE=NÞ þ 2J ∼ ½ðN − 1Þ=2�ϵb, with ϵb being
the two-particle bound-state energy; see Fig. 2.
The EOS allows one to differentiate three distinct phases

in the system; see Fig. 2. The gaseous phase features a
minimum in the EOS at zero density n0 ¼ 0 and a positive
energy per particle compared to the free case e > −2J. On
the other hand, the liquid and BMI phases are characterized
by negative binding energies e < −2J in the minimum. The
equilibrium density of a liquid ranges within 0 < n0 < 1,
and saturates to n0 ¼ 1 in the BMI phase, making its EOS
singular. Moreover, the liquid state is compressible while
the BMI is not.
One of the qualitative differences between the predic-

tions of perturbative theory and DMRG results is the
presence of a narrow liquid phase in the TG limit
J=U ¼ 0. This liquid state is sandwiched between the
gas and BMI phases for VMI < V < −1.61J; see Fig. 1.
The weakest attraction, for which the liquid forms, is
defined by the existence of a two-body bound state.
Remarkably, for the dipolar interaction, the formation of
a two-body bound state does not coincide with the
formation of a self-bound MI state in the many-body
problem for J=U ¼ 0, in contrast to faster decaying
potentials. We thus relate the presence of the liquid phase
to the long-range nature of the dipolar interaction.
The equilibrium properties differ dramatically among the

various phases, as shown in Fig. 3. The equilibrium density
ranges from 0 < n0 < 1 in the liquid phase and saturates to
n0 ¼ 1 in the BMI phase. DMRG simulations result in
density profiles that do not fill the entire lattice for these
phases, contrary to the gaseous state; see inset of Fig. 3.
Moreover, the value of the saturated density agrees excel-
lently with the equilibrium density found from the EOS. Its
value increases almost linearly for the growing attractive
long-range interaction in the liquid phase. Upon reaching
the BMI phase, the equilibrium density saturates to n0 ¼ 1
and becomes independent of the dipolar coupling.
Another important observable pertains to the particle

variance Δn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhn̂02i − n20i

p
, as it quantifies the fluc-

tuations of density and probes the structure of pair
correlations. Particularly, it vanishes in the gas phase
(due to vanishing equilibrium density) and in the BMI
phase becomes of order J=

ffiffiffiffi
U

p
. We find that the maximal

value of Δn is reached in the liquid phase close to half
filling, n0 ∼ 1=2. Fascinatingly, the lattice TG model
captures the particle variance model well and provides a
precise analytic description; see Fig. 3.

FIG. 2. Equation of state of dipolar bosons in a one-dimen-
sional optical lattice for different dipolar strength V=J and fixed
on-site repulsion U=J ¼ 20. Filled symbols denote inhomo-
geneous solutions. Dashed lines show the Tonks-Girardeau
perturbative result [38]. The dotted line shows the behavior
expected for a lattice soliton solution [54]. Liquid forms when the
equation of state shows a minimum at some finite value of density
n0 with the energy per particle E=ðNsn0Þ < −2J; see V=J ¼
−1.4;−1.5;−1.6 curves. A gas occurs when the minimum is
located at zero density with the energy per particle E=N > −2J;
see the V=J ¼ −1.0 curve.
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Nonequilibrium properties.—As nonequilibrium proper-
ties can be experimentally measured [55,56], we investigate
the dynamic structure factor Sðk;ωÞ. It quantifies the
structure and strength of the two-particle excitations
allowing an additional verification of the phases. In
Figs. 4(a)–4(c), we provide characteristic examples of
Sðk;ωÞ in different phases. The structure of the excitations
differs drastically whether the system is compressible or
not. A single mode exhausts the spectrum in the GAS and
LIQ phases. Indeed, the position of the peak in Sðk;ωÞ is
close to the prediction of the Feynman relation, ωðkÞ ¼
½hb̂†i b̂iþ1iϵðkÞ=nSðkÞ�, derived in the single-mode approxi-
mation. Such behavior profoundly varies from that of a
spinonlike spectrum expected at half filling [40,57], in
which modes are populated from the lower (one-particle or
-hole excitation) up to upper (two-particle excitation)
branches; see dashed lines in Figs. 4(a) and 4(b). The
presence of dipolar interactions strongly affects the exci-
tations, creating a dominant mode located close to the
upper branch. Such a behavior is typical of systems that are
softer than the TG gas and possess larger values of the
Luttinger parameter, K > 1 [58]. We verify that the lowest-
energy modes in compressible phases are linear phonons,
validating the applicability of the Luttinger liquid theory.
By employing a flattop model, i.e., Sðk;ωÞ ¼ const,
ω−ðkÞ < ω < ωþðkÞ (see SM for details [38]), we dem-
onstrate that the spectral weight diverges Sðk; vskÞ ∝ 1=k2

as k → 0, that is, the phonon mode is greatly populated, in
agreement with the numerical simulations. The structure of

excitations differs dramatically in the BMI phase, wherein a
gap Δ opens. From the flattop model analysis, we infer
that the spectral weight vanishes at small momenta,
Sðk;ΔÞ ∝ k2 for k → 0. Instead, the edge of the Brillouin
zone, kBZ ¼ π=a, gets strongly populated, and a sharp peak
is formed in SðkBZ;ωÞ so that the lattice Feynman relation
captures well the value of the gap. In absence of dipolar
interactions, the upper and lower bounds are no longer given
by one- or two-particle excitations but rather by doublon-
holon excitations, shown with dotted lines.
Having studied the dynamic structure factor in the three

phases, we focus now on the speed of sound. The presence
of a lattice has strong consequences on sound propagation
[59,60] and other transport properties [61], as can be traced
to the loss of Galilean invariance in the lattice. This
produces a nontrivial dependence of the sound on the
density. To obtain the speed of sound vs, we calculate static
structure factor SðkÞ, compute the compressibility κs from
the EOS, and employ the non-Galilean version of the
Feynman relation [38,62], SðkÞ ¼ κsvsnk=2 applicable for
small momenta. In Fig. 4(d), we present the sound velocity
as a function of the density for different values of the long-
range coupling. For weak dipolar attraction, the speed of
sound decreases above half filling and reaches zero at unit
filling, signaling the transition to a MI state. As the dipolar
strength increases, a liquid state forms, and the sound
velocity also vanishes at spinodal density ns ≤ 1. Finally,

FIG. 3. Density and its variance as a function of V=J for a fixed
U=J ¼ 20. Top: saturated density n0 (circles). Dashed line: unit
filling, n0 ¼ 1 (BMI); zero filling, n0 ¼ 0 (GAS); linear inter-
polation (LIQ). We have performed open boundary conditions
numerical simulations up to a density n ¼ 50=800. Bottom:
particle number variance Δn20 ¼ hn̂20i − hn̂0i2 (squares). The
dotted line denotes the particle number variance obtained in a
TG-like state; see the main text. Inset: characteristic density
profiles obtained for V=J ¼ −1.8 (BMI), V=J ¼ −1.5 (LIQ), and
V=J ¼ −1.3 (GAS).

FIG. 4. (a)–(c) Dynamic structure factor for (a) the GAS phase
(V=J ¼ −0.5, U=J ¼ 20, and n ¼ 25=50), (b) the LIQ phase
(V=J ¼ −1.4, U=J ¼ 20, and n ¼ 25=50), and (c) the BMI
phase (V=J ¼ −1.4,U=J ¼ 20, and n ¼ 50=50). Upper and lower
bounds to the excitation energies for V=J ¼ 0 are obtained from
Bethe ansatz [40,57] (dashed lines) for GAS and LIQ and from
first-order perturbation theory [41–43,49] (dotted lines) for BMI.
(d) Speed of sound as a function of the density for different values
of V=J and a fixed U=J ¼ 20. Symbols from lattice Feynman
relation (see the main text), lines from perturbative results, and
black diamonds extracted from the dynamic structure factor.
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when approaching the BMI phase, the sound velocity nears
zero for any value of density showing no stable homo-
geneous solution exists for jVj > jVBMIj.
For an analytical estimation of the speed of sound, we

employ the non-Galilean invariant Luttinger liquid theory
[38,59,60]. For weak dipolar attraction, we note an agree-
ment between the perturbative theory and exact numerical
analysis. For the increased strength of attraction, the
analytical approach predicts the appearance of a spinodal
point, albeit at an incorrect density value. Additionally, we
report a qualitative difference at small densities where
perturbative theory predicts a finite value of the speed of
sound, in stark contrast with numerical results where no
stable homogeneous solution exists for n ≤ ns. We asso-
ciate this discrepancy with the formation of molecules at
small densities, which is overlooked in the perturbative
description.
Discussion and outlook.—Our Letter shows an uncon-

ventional mechanism for liquid formation in strongly
correlated lattice systems. Specifically, liquefaction arises
due to an interplay between nonlocal attraction and the
superexchange processes originating from short-range
repulsion. Our Letter presents a nontrivial extension of
the quantum van der Waals theory to lattice systems. Our
predictions apply to lattice systems described by one-
dimensional EBH Hamiltonians. These could be realized
experimentally in different ultracold atomic platforms like
dipolar bosons [8,37], Rydberg atoms [63,64], or even
excitonic systems [65]. Recently, one-dimensional dipolar
bosonic systems were produced experimentally [37] and
loaded into corresponding optical lattices [8].
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