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We develop a general theoretical framework to dynamically engineer quantum correlations and
entanglement in the frequency-comb emission from an array of superconducting qubits in a waveguide,
rigorously accounting for the temporal modulation of the qubit resonance frequencies. We demonstrate that
when the resonance frequencies of the two qubits are periodically modulated with a π phase shift, it is
possible to realize simultaneous bunching and antibunching in cross-correlations as well as Bell states of
the scattered photons from different sidebands. Our approach, based on the dynamical conversion between
the quantum excitations with different parity symmetry, is quite universal. It can be used to control
multiparticle correlations in generic dynamically modulated dissipative quantum systems.
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Introduction.—The ability to multiplex several signals at
different frequencies and transmit them via one channel is
of paramount importance for information processing. A
single photon can also be in a quantum superposition of
several frequency channels and act as a flying qudit—a
multilevel analog of the qubit—that can be used for
quantum computing [1]. In order to generate and process
multiqudit entanglement, one must realize (i) single-qudit
operations and (ii) two-qudit gates. It has already been
proven theoretically and demonstrated experimentally that
any single-qudit unitary operation can be performed by
using a combination of phase shapers and a linear modu-
lator [2]. Realization of two-qudit gates is more compli-
cated. The schemes with ancillas and postselection based
on Knill–Laflamme–Milburn (KLM) protocol were pro-
posed [3]. However, the use of such gates is limited since
they operate only with a certain (quite small) probability of
success. An alternative approach is to make photons
interact with a quantum object with nonlinear optical
properties. As such, a two-level system (qubit) that cannot
scatter two photons at once can operate as a simplest
nonlinear sign (NS) gate for resonant photons [4]. Quantum
emitters with two metastable ground states enable deter-
ministic generation of single-rail encoded photonic cluster
states [5,6]. In this Letter, we propose a tunable setup with
several waveguide-coupled qubits that realizes dynamical
control of cross-correlations for multiplexed emission,
enabling generation of multiphoton entangled states.
Such states are indispensable in various areas of the
emerging quantum technologies including quantum com-
munications [7,8] and quantum networks [9–11]; however,
it is rather hard to generate them using probabilistic linear-
optics approaches with low success rates, and they can be
vulnerable to decoherence. The scheme we put forward

enables stable deterministic generation of entangled fre-
quency-coded flying qudits.
We consider an array of qubits with the resonant

frequencies harmonically modulated in time. Waveguide-
coupled qubit arrays are now readily realized [12] and have
a high potential for manipulation of quantum signals
[13–17]. Temporal modulation can be achieved via the
control optical pump beam for cold atom systems [18] or by
means of modulated gate voltage for the case of semi-
conductor quantum dots or solid-state defects [19–22]. For
the modulated superconducting qubits platform the state-
of-the-art technology supports independent coherent modu-
lation of each individual qubit [23]. We show that the qubit
resonance modulation can drive the conversion between
the even (bright) and odd (dark) states in the qubit arrays,
enabling the symmetry-protected bichromatic bunching
and antibunching between the photons from different
sidebands.
More generally, in the sideband-resolved regime, when

the modulation frequency is much larger than the qubit
resonance broadening, the frequency conversion processes,
similar to Stokes and anti-Stokes Raman scattering, give
rise to the frequency comb in the scattered light spectrum
with multiple sidebands separated by the modulation
frequency. The correlations and entanglement of the
frequency-filtered photons in the sidebands of the emission
spectrum can be quite complex. In particular, it was shown
that bunched bundles of several photons can be realized by
filtering certain sidebands [24,25]. The advantage of our
proposal is that the photon-photon correlations can be
dynamically tuned, which is essential for most of the
practical applications [26,34].
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Model.—The structure under consideration consists of N
superconducting qubits, coupled to the waveguide, and
located at the distance d. We focus on the simplest case of
N ¼ 2 qubits, shown in Fig. 1 with a generalization for
N > 2 discussed in Supplemental Material, Secs. (S5)–(S7)
[27]. The qubit resonance frequencies ω1 and ω2 are
modulated as

ω1ðtÞ ¼ ω0 þ A cosΩt; ω2ðtÞ ¼ ω0 þ A cosðΩtþ αÞ;
ð1Þ

where ω0 is the equilibrium qubit resonance frequency, A is
the modulation amplitude, Ω is the modulation frequency,
and α is the relative phase of the modulation. The qubits are
modeled as two-level systems, characterized by the sponta-
neous decay rate into the waveguide γ1D. The structure is
excited from one side by a weak monochromatic coherent
wave at frequency ε. We start with the sideband-resolved
regime, when the modulation frequency Ω is much larger
than the qubit decay rate γ1D, and consider resonant
excitation with frequency ε ≈ ω0. In this case, the scattered
photons can have a well-defined set of frequencies that
form a frequency comb,

εþ nΩ; n ¼ 0;�1;�2;…; ð2Þ

where n is the sideband number. Our goal is to analyze the
second-order cross-correlations between the scattered pho-
tons in the sidebands n1 and n2,

gð2Þn1;n2 ¼
Ið2Þn1;n2

Ið1Þn1 I
ð1Þ
n2

; ð3Þ

where Ið1Þn1ð2Þ is the intensity of scattering of a single photon

into sideband n1ð2Þ, and I
ð2Þ
n1;n2 is the intensity of scattering of

a photon pair into sidebands n1 and n2.
Parity-protected cross-correlations.—From now on we

consider the case when the two qubits are located at the
same point, i.e., ω0d=c ¼ 0 (or 2π), so the system is
invariant under the parity operation P that interchanges the
qubits. The effect of nonzero interqubit distance is analyzed
in Supplemental Material [27]. When such a system is not

perturbed by the modulation, the light couples only to the
symmetric (even with respect to P) mode of the two qubits
ðσ†1 þ σ†2Þj0i, where σ†1;2 are the qubit raising operators. The
parity symmetry also enforces strict constraints on the
photon emission of the modulated system. If the qubit
modulations are in phase, α ¼ 0, the photon can be
scattered to any sideband. However, for α ¼ π, the qubit
energy modulation is odd with respect to P. The amplitude
of the photon emitted into the sideband with an even (odd)
number is an even (odd) function of A; see Sec. 2G of the
Supplemental Material for the rigorous proof [27]. Since it
should be invariant under P, only the even-order sidebands
are present in the emission spectrum. Similarly, in the case

of two-photon emission, all harmonics Ið2Þn1;n2 are present if
α ¼ 0, but for α ¼ π the P symmetry dictates that the two-
photon scattering process is allowed only if n1 þ n2 is even.
These symmetry arguments indicate that the second-order
cross-correlation function (3) should be very sensitive to
the sideband numbers n1 and n2 when α ¼ π. In particular,
for odd n1, n2 we expect parity-protected photon bunching.
We have modeled the two-photon frequency-filtered

photon detection scheme illustrated in Fig. 1 using the
master equation formalism [35]; see Supplemental Material
Sec. S3 for details [27]. Namely, the reflected photons are
absorbed by the detectors D1 and D2 and the coincidence
counts are calculated [36]. The detectors are modeled as
two-level systems with the frequencies ωD1 ¼ εþ n1Ω,
ωD2 ¼ εþ n2Ω, and additional nonradiative decay with the
rate γD that ensures that the detectors are always well below

FIG. 1. Schematics of the structure under consideration. Two
qubits Q1 and Q2 coupled to a waveguide are excited by coherent
electromagnetic fields. Qubit resonance frequencies are modu-
lated in time according to Eq. (1).

(a) (b)

(c) (d)

FIG. 2. Bichromatic photon-photon correlations. (a)–(c)
Photon-photon correlations depending on the sideband numbers
n1 and n2 calculated for A ¼ 1.5 Ω. Other parameters are
ω0d=c ¼ 0, Ω ¼ 200γ1D, γD ¼ 5γ1D. (d) Calculated exponential
of the entanglement entropy eS depending on the modulation
strength A for resonant excitation, ε ¼ ω0, and the relative
modulation phase α ¼ 0; π=2; π. Thick lines show the analytical
result derived in Supplemental Material [27].
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the saturation. Figures 2(b)–2(d) present the calculated
equal-time correlation function depending on the harmonic
numbers n1 and n2 for three relative modulation phases
α ¼ 0; π=2; π. In agreement with the symmetry analysis
above, all the harmonics are present in the emission spectrum
for symmetric modulation; see Fig. 2(b). When α ¼ π=2,
Fig. 2(c), the two-photon correlation pattern becomes much
richer and shows alternating photon bunching and anti-
bunching depending on the values of n1 and n2. This pattern
is in qualitative agreement with our simplified theoretical
model presented in Sec. S4 of the Supplemental Material.
Finally, for antisymmetricmodulation, presented inFig. 2(d),
the calculation reveals both parity-protected photon bunch-
ing, when n1 and n2 are odd, and parity-protected anti-
bunching, when n1 and n2 have different parity.
Entanglement of flying qudits.—The emitted photons,

residing in a superposition of the several frequency side-
bands, can be regarded as many-level qudits. To quantify
the two-qudit entanglement, we calculate the entanglement
entropy [37,38] S ¼ −

P
λ jλj2 ln jλj2, where λ is the sin-

gular value of the (normalized) two-photon wave function
ψn1;n2 . The latter is obtained numerically by calculating the
correlation of the detectors D1 and D2 polarizations. The
dependence of eS on the modulation amplitude is shown in
Fig. 2(d) for different relative modulation phases. For in-
phase modulation, α ¼ 0, the entropy vanishes. That
follows from the rigorous analytical expression for the
scattering matrix of the homogeneously modulated system
that differs from that of the system without modulation
only by (time-dependent) phase factors; see Supplemental
Material Sec. S2E [27]. For nonzero α, the entropy
increases with A, reaches the maximal value of ln 2, and
then oscillates below it. Thick lines in Fig. 2(d) show the
analytical result neglecting the radiative coupling of the
qubits (see Supplemental Material Sec. S5). It predicts that
the modulation amplitude required to achieve S ¼ ln 2 is
given by A� ¼ j0Ω=½2 sinðα=2Þ�, where j0 is the zero of the
Bessel function J0. Therefore, the antiphase modulation,
α ¼ π, is favorable for maximal entanglement.
When S ¼ ln 2, photons are in a Bell state ψn1;n2 ¼

ðun1un2 þ vn1vn2Þ=
ffiffiffi
2

p
, where un and vn are some orthogo-

nal single-qudit states. Using single-qudit linear operations,
that can be implemented by phase shapers and optical
modulators [2], the Bell state can be converted to any other
basis required for applications. Another approach is to
consider nonharmonic modulation of the qubits, that
enables us to generate any two-photon state described by
a rank-2 matrix ψn1;n2 , as described in Sec. S6 of the
Supplemental Material [27].
Higher rank states can be generated with larger number

of qubits N. As shown in Supplemental Material Sec. S7,
the entanglement entropy of the state of M ≥ 2 photons
emitted byN ≥ M modulated qubits oscillates as a function
of the modulation amplitude with several incommensurate
periods and can reach the limiting value lnN at certain

points. In particular, three qubits modulated with the
amplitude A ¼ j0Ω=

ffiffiffi
3

p
and the relative phases 2π=3 emit

the three-photon state ψn1;n2;n3 ¼ ðun1vn2wn3 þ…Þ= ffiffiffi
6

p
,

where the ellipsis denotes the permutations of the indices,
and un, vn, and wn are three orthogonal states. Such a state
possesses the maximally possible entanglement entropy of
ln 3 and is an analog of the cluster state: indeed, if one of
the photons is measured (in the u, v, w basis), the two other
photons remain in the entangled Bell state. Similar states of
four and more photons can also be generated. While the
cluster states could be very important for many quantum
computing applications, it is yet unclear how wide the class
of many-photon states that can be generated by the
proposed scheme is, e.g., if more complex matrix product
states are feasible.
Time-dependent correlations.—Signatures of the sibe-

band cross-correlations can be observed even without
frequency filtering in the time dependence of the total
second-order correlation function,

gð2Þðtþ τ; tÞ ¼ ha†ðtþ τÞa†ðtÞaðtÞaðtþ τÞi
½ha†ai0�2

; ð4Þ

where a is the annihilation operator corresponding to the
reflected photons, and h� � �i and h� � �i0 denote averaging
over the state of the system with and without modulation,
respectively. Because of the temporal modulation of the
qubit resonance frequencies, the correlation function gð2Þ is
no longer a function of delay time τ only, but also depends
on the absolute time t [39] with the period 2π=Ω. This
allows us to present the correlation function as the Fourier

series gð2Þðtþ τ; tÞ ¼ P∞
n¼−∞ e−inΩtgð2Þn ðτÞ. We will focus

on the harmonics gð2Þn ðτÞ at zero delay τ ¼ 0.
The numerator of the total correlation function Eq. (4) is

determined by the squared sum,

ha†ðtþ τÞa†ðtÞaðtÞaðtþ τÞi ¼
�
�
�
�

X

n

SnðτÞe−iΩt
�
�
�
�

2

; ð5Þ

where Sn is the amplitude of the two-photon scattering
process, characterized by photon pair energy change
2ε → 2εþ nΩ. A general approach for few-photon scatter-
ing in Floquet systems was developed in Ref. [40]. Here we
use a similar perturbative diagrammatic approach to cal-
culate Sn (see Supplemental Material Sec. S2 [27]). Using
Eqs. (4) and (5), we obtain the expression for the nth
harmonic of the total two-photon correlation function,

gð2Þn ðτÞ ∝ P∞
k¼−∞ SnþkðτÞS�kðτÞ. In particular, for low

modulation amplitude A we have Sn ∝ Ajnj, so the n ¼
�1 harmonic gð2Þ1 ∝ A is governed by S1S�0 þ S0S�−1. Here
S�1 correspond to amplitudes of the first-order anti-
Stokes and Stokes two-photon scattering processes
2ε → 2ε�Ω. In the considered resolved-sideband regime,
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they are determined by the probability of the two-
photon scattering into the sidebands with energies ε and

ε�Ω: Ið2Þ0;�1 ∝ jS�1ð0Þj2.
Our consideration of frequency-filtered correlations

above has demonstrated that for antisymmetric modulation

α ¼ π, one has Ið2Þ�1;0 ∝ jS�1ð0Þj2 → 0. Thus, we expect that

for such modulation the n ¼ �1 harmonic gð2Þ1 will be
absent in the Fourier series. This is confirmed by the
rigorous calculation of the total time-dependent zero-delay
correlation function gð2Þðt; tÞ, shown in Fig. 3(a). Black
solid and red dotted curves correspond to α ¼ 0 and α ¼ π,
respectively. It is clearly seen from the calculation that for
α ¼ π the period of the dependence is twice smaller than
that for α ¼ 0. This indicates the absence of the first
harmonic ∝ e∓iΩt in the former case and provides a direct
manifestation of the parity-protected antibunching in the
time-dependent photon-photon correlations.
Figure 3(b) examines the dependence of the time-

resolved correlations on the relative modulation phase α
and the incident frequency detuning ε − ω in more detail.
The color shows the numerically calculated amplitude of

the first harmonic jgð2Þ1 ð0Þj=A (at A → 0). In agreement with
the results in Figs. 2 and 3(a), the correlations are sup-
pressed if α ¼ �π for any incident light frequency ε. The
strongest correlations are achieved for the in-phase modu-
lation, α ¼ 0. The calculation also shows suppression of the

harmonic gð2Þ1 ð0Þ for resonant pumping, when ε ¼ ω0.
Even though the intensities of the Stokes and anti-Stokes
two-photon scattering processes are nonzero in that case,

Ið2Þ0;�1 ∝ jS�1ð0Þj2 ≠ 0, as was illustrated in Fig. 2, the

interference of the two contributions to gð2Þ1 ð0Þ stemming
from the Stokes and anti-Stokes processes turns out to be
destructive, S1ð0ÞS�0ð0Þ þ S0ð0ÞS�−1ð0Þ ¼ 0 at ε ¼ ω0.

Note that gð2Þ1 ðτÞ in this case is still nonzero if a finite
delay time τ ≠ 0 is considered.
As a function of pump frequency, the gð2Þ1 harmonic has

two pairs of Stokes or anti-Stokes resonances: stronger
single-photon resonances at ε ¼ ω0 � Ω and weaker two-
photon resonances at 2ε ¼ 2ω0 �Ω, marked by dashed
and dotted lines in Fig. 3(b), respectively. At these
resonances, the first harmonic of the correlation function
reads

gð2Þ1 ð0Þ ¼ � iA
4γ1D

cos
α

2
; ε ¼ ω0 � Ω;

gð2Þ1 ð0Þ ¼ � 7A
6Ω

cos
α

2
; ε ¼ ω0 �

Ω
2
; ð6Þ

where we supposed Ω ≫ γ1D; see also Sec. S3 of the
Supplemental Material [27] for more general analytical
expressions.
Strong modulation.—Up to now we focused on the weak

modulation case, when only the first-order Stokes and anti-
Stokes scattering is considerable. For strong modulation
additional sidebands emerge, leading to high-order har-
monics gð2Þn in the temporal dependence of the total
correlation function. Figure 4 shows the dependence of
gð2Þðt; tÞ on A for (a) symmetric and (b) antisymmetric
modulation. Similarly to the case of small A [Fig. 3(a)], the
temporal period for antiphase modulation is twice smaller
than that for the in-phase modulation. This indicates the
absence of all odd-order harmonics for α ¼ π, in agreement

FIG. 3. (a) Time-dependent photon-photon correlations
gð2Þðt; τ ¼ 0Þ calculated for ε − ω0 ¼ Ω. Black solid and red
dotted curves correspond to in-phase (α ¼ 0) and out-of-phase
(α ¼ π) modulation of the first and second qubit resonance
frequencies. (b) Color map of the correlation function first

temporal harmonic jgð2Þ1 ð0Þj as a function of relative modulation
phase α and frequency detuning of the incident light ε − ω. The
calculation parameters are Ω ¼ 5γ1D, A ¼ 0.025γ1D.

FIG. 4. Total time-dependent photon-photon correlation func-
tion gð2Þðt; tÞ depending on the modulation amplitude for (a) in-
phase and (b) out-of-phase modulation of the first and second
qubit resonance frequencies. Calculation was performed for
ε ¼ ω0 þ Ω, Ω ¼ 5γ1D.
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with the parity argument forbidding two-photon scatte-
ring processes 2ε → 2εþ ð2kþ 1ÞΩ. Then, substituting

S2kþ1 ¼ 0 into gð2Þn ðτÞ, we indeed conclude that gð2Þ2kþ1 ¼ 0.
The correlations change significantly with the modula-

tion strength. For low A, a relatively weak overall anti-
bunching is observed for both in-phase and antiphase
modulation. With increase of A, the antibunching first
becomes stronger, reaching maximum for A=γ1D ≈ 3 (0.7),
then a bunching appears during certain time intervals, and
finally the antibunching gets completely replaced by a
pronounced bunching at A=γ1D ≳ 6 (1.2) for the case of
(anti)symmetric modulation. This behavior for α ¼ 0 is
well explained by Eq. (6) that suggests that the amplitude

jgð2Þ1 j increases linearly with A and should reach the value of
the order of unity at the threshold A ∼ γ1D. Then, it can

overcome the constant contribution gð2Þ0 , enabling the
change of the gð2Þðt; tÞ sign. Similarly, for α ¼ π when

gð2Þ1 ¼ 0, the second harmonic gð2Þ2 grows with A and
reaches unity at A ∼ γ1D.
Summary.—We have considered theoretically a wave-

guide QED setup where the qubit resonance frequencies are
modulated periodically in time. We predict that by tuning
the relative phase of modulation for different qubits, one
can realize multiphoton frequency comb in qubit emission
with controllable correlations of photons at different
frequencies which could be very useful in the modern
optical quantum computing experiments. Our results open
the way for deterministic generation and processing of
entangled multiphoton states in systems with high co-
operativities, such as optical chips or chips based on
superconducting qubits.
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