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We have completed the calculation of pure-recoil corrections of order ðZαÞ6 to Coulombic bound states
of two spin-1=2 fermions without approximation in the particle masses. Our result applies to systems
of arbitrary mass ratio such as muonium and positronium, as well as hydrogen and muonic hydrogen (with
the neglect of proton structure effects). We have shown how the two-loop master integrals that occur in the
relativistic region can be computed in analytic form and suggest that the same method can be applied to the
three-loop integrals that would be present in a calculation of order ðZαÞ7 corrections.
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Quantum field theory (QFT) describes the scattering of
elementary particles in a relatively straightforward way; the
description of bound states in QFT is less direct, but no less
important. The theory of bound states in QFT typically
involves quantities that are of infinite order in the usual
small parameters of the theory. Despite the complexity,
deep understanding of bound systems is required for the
description of most objects that make up our world: protons
and neutrons, nuclei, atoms, molecules, etc. Two-body
bound states of elementary particles such as positronium,
muonium, and quarkonium allow for the cleanest descrip-
tion, uncluttered by any internal structure of the constitu-
ents. Two-body systems bound by the Coulomb force are
the most well understood since, compared to the strong
force, the electromagnetic force lacks a confining phase and
is weakly coupled on all scales of practical interest.
Consequently, the study of exotic atoms such as positro-
nium and muonium allows for the deep quantitative study
of binding in QFT. The two-body atom hydrogen is of
central interest for practical reasons, despite the compli-
cation of having to take proton structure into account. In
fact, making a virtue out of necessity, high-precision
comparison of experiment and theory for hydrogen tran-
sition energies allows for the determination of the proton
charge radius and other internal properties [1]. Some useful
reviews of the theory of two-body bound states in quantum
electrodynamics (QED) include Refs. [2–5].
In this Letter, we will focus on recoil corrections to the

energy levels of two-body bound systems composed of
elementary spin-1=2 fermions in their S states. We label the
masses of these particles m1 and m2, with m1 typically the

smaller of the two. Examples of such systems include
muonium, positronium, and hydrogen (although proton
structure corrections mix with recoil corrections in an
important way for hydrogen). Recoil corrections in the
nonrelativistic problem are completely accounted for by
writing the Schrödinger-Coulomb equation in terms of the
reduced mass mr ¼ m1m2=ðm1 þm2Þ. The Bohr energy
level formula −½mrðZαÞ2=2n2� takes recoil into account.
(Here Ze is the charge of the positive constituent with e the
magnitude of the electron charge. The fine structure con-
stant is defined through e2 ¼ 4πα. We use units for which
ℏ ¼ c ¼ 1.) Relativistic corrections to the Bohr levels
involve higher powers of v2=c2, and since v ∼ ðZαÞc for
nonrelativistic Coulombic systems, the first corrections have
relative order ðZαÞ2. Breit [6] realized that these corrections
could be found by considering a two-body Hamiltonian
consisting of free relativistic Hamiltonians for each con-
stituent plus a term describing one-photon exchange. Fermi
[7] worked out the spin-one (s ¼ 1) minus spin-zero (s ¼ 0)
hyperfine splitting (hfs) contribution at this order, which
comes entirely from one-photon exchange. The Fermi term
contains the square of the wave function at contact as a
factor. Breit andMeyerott [8] justified the use of the reduced
mass in jψnð0Þj2 ¼ ðmrZαÞ3=ðπn3Þ for the Fermi correc-
tion. Explicit expectation values were worked out for the
effective Hamiltonian including first relativistic corrections
plus one-photon exchange by Barker and Glover [9], with
the result
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for the S-state energy correction at O½ðZαÞ4�. The spin
operator has the expectation values hσ⃗1 · σ⃗2is¼1 ¼ 1
and hσ⃗1 · σ⃗2is¼0 ¼ −3, so that the hfs is hσ⃗1 · σ⃗2ihfs ¼ 4
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and the spin average is hσ⃗1 · σ⃗2iavg ¼ 1
4
ð3hσ⃗1 · σ⃗2is¼1þ

hσ⃗1 · σ⃗2is¼0Þ ¼ 0. The hyperfine energy difference for
n ¼ 1 at order ðZαÞ4 defines the Fermi splitting

EF ≡ 8m3
rðZαÞ4

3m1m2

: ð2Þ

At order ðZαÞ5 the energy correction is more involved,
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The hyperfine contribution (ΔEhfs ≡ ΔEs¼1 − ΔEs¼0) in
ΔEð5Þ [10–12] (proportional to hσ⃗1 · σ⃗2i) comes entirely
from two-photon exchange in the hard (i.e., relativistic)
region of integration. There are two relativistic scales
corresponding tom1 andm2, and integration over the region
between the two leads to the characteristic logarithmic
dependence on the mass ratio. The spin-average contribution
(ΔEavg ≡ 1

4
½3ΔEs¼1 þ ΔEs¼0�) inΔEð5Þ [11,13–16] is more

complicated, having contributions from all three energy
regions: hard (relativistic), soft (of ordermrZα), and ultrasoft
[of order mrðZαÞ2]. The quantity Hn is the nth harmonic
number Hn ¼

P
n
i¼1ð1=iÞ and ln k0ðn;lÞ is the Bethe log.

A table of Bethe logs can be found, for example, in [4].
Detailed modern derivations of ΔEð5Þ are given in Chap. 15
and 17 of [17].
Work on order ðZαÞ6 recoil corrections to the hyperfine

splitting commenced in 1971 [18]. The logarithmic cor-
rections were known by 1977 [19,20], and the constant to
go with the log (but not its complete mass dependence) was
given by Bodwin et al. [21,22],
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Later, Pachucki found the full state and mass dependence of
the hfs recoil correction at order ðZαÞ6 [23]. The mass
dependence was obtained as the result of a numerical
integration. Work on recoil corrections to the spin-averaged
energy shift (also referred to as the Lamb shift) at order
ðZαÞ6 commenced in 1988 [24]. By 1993, after a number of
false starts, it was clear that there was no lnðZαÞ contri-
bution at this order [25,26]. The complete correction at this
order was given by Pachucki and Grotch in 1995 [27].
Despite some controversy over this result [28–30], it was

confirmed with complete state dependence by Eides and
Grotch [29],
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The result ΔEð6Þ
avg was further confirmed by a high-precision

numerical evaluation of the order m1=m2 Lamb shift recoil
correction [31,32]. Higher recoil corrections at order ðZαÞ6
were obtained by Blokland et al. [33] as a power series in
ðm1=m2Þ, with results up to order ðm1=m2Þ4.
Expressions (1) and (3) for ΔEð4Þ and ΔEð5Þ are pure-

recoil energy corrections. That is, they are proportional to a
power of Zα with always the same number of interactions
on the electron line as on the proton line and no radiative
photons (emitted and absorbed on a single line) or vacuum
polarization loops included. They are exact functions of the
particle masses. Expressions (4) and (5) for the order ðZαÞ6
contributions to the hfs and Lamb shift give recoil correc-
tions but, except for the exact coefficient of the log term and
Pachucki’s numerical evaluation of the hfs [23], these
corrections are only known as a series expansion in the
recoil parameterm1=m2. In this Letter, we obtain the S-state
pure-recoil correction at order ðZαÞ6 exact in the particle
masses. This completes, at last, the project of computing
O½ðZαÞ6� pure-recoil corrections for these states, which had
previously only been obtained as an approximate function
of the masses.
In this Letter, we focus on S-state corrections. Recoil

corrections at order ðZαÞ6 for states with l > 0 are
discussed in Refs. [25,26,28,34,35]. The corrections for
states with higher angular momentum do not involve the
hard momenta that are a central challenge for the S-state
corrections considered here.
Our calculation was done using nonrelativistic QED

(NRQED) [36,37]. Ultraviolet and infrared divergences
were regulated using dimensional regularization [38–40].
The NRQED Feynman rules were read off of the
Lagrangian given by Hill et al. [41] (see also [42]).
Bound state energies were computed using the NRQED
Bethe-Salpeter equation—the procedure is described in
[43,44]. Properties of the bound state wave function and
expectation values in D ¼ 3 − 2ϵ spatial dimensions are
given in [45,46]. There are three classes of recoil contri-
butions at order ðZαÞ6 that must be added up to obtain the
complete contribution: expectation values of the interaction
kernels shown in Figs. 1(a)–1(h), the expectation value of
the contact kernel, Fig. 1(i), and the second-order pertur-
bation contribution illustrated in Fig. 1(j). The internal
momenta of these NRQED expectation values are restricted
to the nonrelativistic region through use of the method of
regions [47,48] [although the momenta involved in finding
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the matching coefficients [36–38] for the contact term
Fig. 1(i) are hard]. The second-order perturbation contri-
bution was computed as in [40,49]. The totals of the two
soft contributions [Figs. 1(a)–1(h) and 1(j)] to the hfs are
found to be

ΔEsoft
hfs ¼ πjψnð0Þj2ðZαÞ3μ̄2ϵ
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[Here μ is the mass parameter introduced in the process of
dimensional regularization, and μ̄2 ¼ μ2eγE=ð4πÞwith γE ≈
0.57722 as the Euler-Mascheroni constant. The product of
the charges is q1q2 ¼ −4παμ̄2ϵ.] The probability density of
contact in D-dimensional space is

jψnð0Þj2 ¼
ðmrZαÞ3
πn3

þOðϵÞ: ð8Þ

For the soft contribution to the spin-averaged energy
correction, we find the finite result
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The energy correction coming from the contact term,
Fig. 1(i), can be expressed in terms of the two-particle
threshold (zero relative velocity) scattering amplitudes Ms
of Fig. 2 by

ΔEhard
s ¼ −jψð0Þj2Ms: ð10Þ

These scattering amplitudes contain momenta exclusively
from the hard, or relativistic, region. We calculate the
amplitudes using standard QED in Feynman gauge. The
D-dimensional traces were done using FeynCalc [50,51]. Then
the integration by parts identities were implemented through
use of the program FIRE [52]. Some of the master integrals
obtained fromFIREwere integrable using standard techniques
[53]. The rest were integrated using themethod of differential
equations [54–56] in terms of the variable x ¼ m1=m2. The
(first-order, coupled) differential equations were put into a
canonical form [57] using FUCHSIA [58], and the solutions
were expressed in terms of harmonic polylogarithms
HPLðfag; xÞ [59,60]. The master integrals were expanded
(using the method of regions) about the point x ¼ 0 (as in
[33]) since the integralswithm1 → 0 are tractable. The x ¼ 0
limits of the integrals were used as boundary conditions,
which along with the differential equations allowed us to
solve for the master integrals for all positive values of x. We
found that the amplitudes can be expressed as

Ms ¼ −
πðZαÞ3
m1m2

μ̄2ϵ
�
μ2

m2
r

�
2ϵ

Hs; ð11Þ

with

FIG. 1. Kernels contributing recoil corrections at order ðZαÞ6.
The electron line is shown on the top and the positive particle
(proton, positive muon, etc.) on the bottom. The dotted line
represents a Coulomb photon and the wiggly line a transverse
photon. The vertices are the full NRQED vertices for the
interaction shown. The kernels include (a) the relativistic kinetic
energy correction, (b) Coulomb exchange with higher-order
NRQED vertices, (c) transverse photon exchange with NRQED
vertices, (d) crossed transverse-Coulomb photons, (e) crossed
transverse-Coulomb-Coulomb photons, (f)–(h) “Λ” kernels with
a single seagull vertex, (i) the contact term, and (j) the con-
tribution from second-order perturbation theory. Also included
but not pictured are crossed graphs flipped left to right and
seagull “V” graphs with the seagull vertex on the bottom instead
of the top.

FIG. 2. Three-photon-exchange scattering diagrams contribut-
ing to the contact-term matching coefficient of Fig. 1(i). Diagram
(a) represents the ladder and (b) the totally crossed diagram. The
contributions of (c) and (d) must be doubled to account for equal
reflected diagrams.
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Hhfs ¼ Hs¼1 −Hs¼0 ¼ −
4x

3ð1þ xÞ2ϵþ hhfs; ð12aÞ

Havg ¼
DHs¼1 þHs¼0

Dþ 1
¼ havg: ð12bÞ

The hfs and spin-average functions are

hhfsðxÞ ¼
1

9π2ð1 − x2Þ2 f2π
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A nontrivial consistency check of our results for the hðxÞ
functions comes from the symmetry under interchange of
particle masses m1 ↔ m2, which implies hð1=xÞ ¼ hðxÞ.
The final results (adding the soft plus hard contributions)

are
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For the two spin states separately, we have

ΔEs¼1 ¼ ΔEavg þ
1

4
ΔEhfs; ð17aÞ

ΔEs¼0 ¼ ΔEavg −
3

4
ΔEhfs: ð17bÞ

Our results are in complete agreement with Pachucki’s
numerical evaluation of the mass dependence of the hfs
contribution [23]. In particular, we reproduce his graph of
Fig. 3. Our results for the ðZαÞ6=n4 and ðZαÞ6=n6 terms are
consistent with the consequences of a long-distance rela-
tivistic effective theory of hydrogenlike atoms as discussed
by Jacobs [61,62]. It is also easy to expand our results for
small values of x ¼ m1=m2. We find a few errors in the
series expansions of Blokland et al. [33]. In their hfs result
of Eq. (22) in the order (m=M) term, the −ð13=12Þ should
be þð11=12Þ, and in the order ðm=MÞ2 term of that
equation the −13 ln 2 should be −12 ln 2, and −4=3 should
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be −7=3. In their average result of Eq. (23), the −ð113=18Þ
should be −ð133=18Þ.
For particle-antiparticle bound systems such as positro-

nium, the x → 1 limit is required. This limit can be easily
obtained using the forms of hðxÞ given above (after using
the HPL command “HPLConvertToKnownFunctions”).
The required limits are
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For particle-antiparticle bound systems, the recoil correc-
tions to the energies at Oðα6Þ are
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We have used Z ¼ 1, m1 ¼ m2 ¼ m, mr ¼ m=2, and
x ¼ m1=m2 ¼ 1 for this evaluation. The results here are
in agreement with earlier evaluations: Refs. [23,40,63,64]
for the hyperfine correction and Ref. [40] for the average
energy shift.
A practical application of our new results can be found in

the muonium hyperfine splitting. The previous result [33]
for the “second order in mass ratio, relative order ðZαÞ2”
contribution (in Table 10.1 of [4]) is 65.36 Hz. Our
corrected result is 76.35 Hz, and including all orders in
the mass ratio (two and above), we get 77.20 Hz. This
additional contribution of 10.99 Hz for the second order in
mass ratio correction can be compared to the current
theoretical uncertainty of 70 Hz coming from estimates
of uncalculated terms [65] and the uncertainty 53 Hz of the
most precise experimental value [66]. A new experiment by
the MuSEUM Collaboration is in progress at J-PARC (see,
e.g., [67]) with the goal of reducing the experimental
uncertainty by a factor of 10. In that case, and with
continuing theoretical effort, our result will be relevant
for the comparison between theory and experiment.
As a more general consideration, one might wonder

about the convergence of the Zα expansion, given the poor
numerical agreement of the series for m1=m2 Lamb shift
recoil corrections through order ðZαÞ7ln2½1=ðZαÞ� [68,69]
with the result of an all orders in ðZαÞ calculation [31,32].
However, it was shown by a best-fit analysis that the

contribution proportional to ðZαÞ7 ln½1=ðZαÞ� with only a
single power of the log is numerically larger than that of the
log squared term. The ðZαÞ series for order m1=m2 recoil
corrections is well behaved at least through order ðZαÞ7 in
the sense that N6=N5 and N7=N6 are small, where Nk is the
numerical value of the complete order ðZαÞk term in the
expansion according to the fits given in [31,32].
In summary, we have completed the calculation of pure-

recoil corrections at order α6 to two-fermion Coulombic
bound systems. One reason for performing this calculation
was simply to get the exact result that would apply to
diverse systems such as hydrogen, muonium, muonic
hydrogen, and positronium without the need for approx-
imations or expansions. The second important reason was
to test a method for calculating the extremely difficult
master integrals that will be required for the order α7 hard
corrections to two-body Coulombic bound states. Even at
order α6, some of the master integrals are challenging to
handle by traditional methods (see Ref. [70] for example),
and the three-loop massive integrals required at order α7 are
anticipated to be significantly more difficult.
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