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We characterize numerically the dominant dynamical regimes in a superfluid ultracold fermionic
Josephson junction. Beyond the coherent Josephson plasma regime, we discuss the onset and physical
mechanism of dissipation due to the superflow exceeding a characteristic speed, and provide clear evidence
distinguishing its physical mechanism across the weakly and strongly interacting limits, despite qualitative
dynamics of global characteristics being only weakly sensitive to the operating dissipative mechanism.
Specifically, dissipation in the strongly interacting regime occurs through the phase-slippage process,
caused by the emission and propagation of quantum vortices, and sound waves—similar to the Bose-
Einstein condensation limit. Instead, in the weak interaction limit, the main dissipative channel arises
through the pair-breaking mechanism.
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Introduction.—The Josephson effect of a supercurrent
tunneling through a weak barrier has been one of the
hallmarks of superfluidity. Originally it was proposed and
realized as a junction between two superconductors sep-
arated by a thin insulating barrier [1,2]. With the advent of
experiments with ultracold quantum gases, one can produce
a Josephson junction setup by splitting the atomic cloud
into two parts through a relatively thin external potential
[3–6]. Controlling the number of atoms in both reservoirs,
one can produce either dc or ac Josephson junction. In the
latter, the difference in chemical potentials between both
clouds plays the role of dc voltage used in the electronic
Josephson junctions. In such atomic systems, the tunability
of interparticle interactions provides the means to control-
lably investigate in a single system the dynamics, and
stability, of such supercurrents across the BEC-BCS cross-
over [7–11], including the strongly interacting unitary
Fermi gas (UFG) regime, which combines properties of
the two limits. Although one would expect different
physical mechanisms to be at play in the limiting cases
due to distinct low-lying excitation modes, understanding
the dissipative dynamics in a fermionic Josephson junction
across such regimes from a microscopic level remains an
open question.
In this Letter, we provide clear evidence distinguishing

the different physical mechanisms at play during the
dynamical evolution across the junction in a testable
environment, thus extending beyond the well-studied
BEC regime [3,5,6,9,12–16] for which simulations are
relatively easy at the mean-field (Gross-Pitaevskii) level
[17]. Specifically, our numerical study—which features no

adjustable parameters—is performed in the context of a
highly controllable ultracold fermionic atom experiment at
LENS (Florence), which observed the transition from coher-
ently oscillating to decaying supercurrents [8]. Our time-
dependent analysis unambiguously identifies the distinct
microscopic origins of emerging dissipative dynamics across
the weakly (BCS) and strongly (UFG) interacting limits,
despite global system quantities exhibiting similar features.
Theoretical model.—The BCS regime of the superfluid

Fermi gas is studied by means of the time-dependent
Bogoliubov–de Gennes (BdG) equations [18]; until now,
essentially all such fermionic Josephson junction studies
were limited to considerations of either static cases [19–21]
or 1D scenarios [22] (with a simplified two-mode model
considered in Refs. [23,24]). The time-dependent
BdG equations describe the evolution of quasiparticle
wave functions φnðr; tÞ ¼ ½unðr; tÞ; vnðr; tÞ�T , and
the Pauli principle is manifested by orthonormalityR
φ†
nðr; tÞφmðr; tÞdr ¼ δnm that must be satisfied at each

time. The equations read (using units of m ¼ ℏ ¼ 1)

i
∂

∂t

�
unðr; tÞ
vnðr; tÞ

�
¼
�

hðr; tÞ Δðr; tÞ
Δ�ðr; tÞ −h�ðr; tÞ

��
unðr; tÞ
vnðr; tÞ

�
; ð1Þ

where h is the single quasiparticle Hamiltonian hðr; tÞ ¼
−ð∇2=2Þ þ Uðr; tÞ þ Vextðr; tÞ − μ shifted by the chemical
potential μ.U is the mean-field potential, which is routinely
neglected in the BCS regime, and Vextðr; tÞ is an external
potential. The pairing potential Δðr; tÞ ¼ −gνðr; tÞ models
Cooper pairing phenomena, where g ¼ 4πas is the cou-
pling constant defined through the scattering length as, and
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the anomalous density reads ν ¼ P
En>0 v

�
nun, where En is

quasiparticle energy corresponding to nth quasiorbital. In
practice, a renormalized coupling constant is used, with the
sum evaluated up to a cutoff energy Ec in order to cure the
ultraviolet divergence [25,26]. The equations are valid for
jaskFj≲ 1. The Fermi wave vector and associated Fermi
energy are defined through relation to gas density n as
kF ¼ ffiffiffiffiffiffiffiffi

2εF
p ¼ ð3π2nÞ1=3. In order to initialize the time-

dependent simulation we need to provide the solution of the
static variant of Eq. (1); i.e., we carry out the replacement
ið∂=∂tÞ → En. Our analysis is based on the following
observables (omitting here, for brevity, position and
time dependencies): (i) the particle number density
n ¼ P

En>0 jvnj2, (ii) the current j ¼ 2
P

En>0 Im½vn∇v�n�,
and (iii) the pairing field (order parameter) Δ.
The UFG limit is instead modeled within the framework

of the superfluid local density approximation (SLDA) [26–
28]. Exploiting the concept of density functional theory,
this is a well-tested extension of the BdG scheme beyond
the BCS regime, allowing us to grasp the limit of strong
interaction regime with askF → ∞. The scale invariance
property of the UFG imposes that ΔðUFGÞ ¼ −ðγ=n1=3Þν,
and UðUFGÞ ¼ ½βð3π2nÞ2=3=2� − ðjΔj2=3γn2=3Þ, which is no
longer negligible. The coupling constants β and γ are
adjusted to ensure correct reproduction of basic properties
of the uniform gas, like the Bertsch parameter ξ0 ≈ 0.4 and
the energy gap Δ=εF ≈ 0.5. Over the years, the SLDA
approach has been successfully applied to a variety of
problems, like dynamics of topological defects [29–33],
Higgs modes [34], properties of spin-imbalanced systems
[27,35–38], and even quantum turbulence [39,40].
Parameter regime and numerical implementation.—Our

studies are motivated by the LENS 6Li experimental setup
presented in Ref. [8]. However, as the direct numerical
solution of the full 3D equations of motion (1) is beyond
reach of present computing systems, we simplify the
computation process by adopting an effectively two-
dimensional geometry: in effect, we assume quasiparticle
wave functions of a generic form φnðr; tÞ≡ φnðx; y; tÞeikzz
and approximate the full 3D harmonic oscillator potential
VhoðrÞ → Vhoðx; yÞ ¼ mω2

xðx2 þ λ2y2Þ=2, with λ ¼
ωy=ωx ¼ 148=15 being the aspect ratio, as in the experi-
ment. We solve the problem on a computational grid of size
Nx × Ny × Nz ¼ 768 × 96 × 24 (lattice spacing is dx ¼ 1

and defines the numerical unit of length). The number of
atoms per z plane is Ntot=Nz ≈ 830. Simultaneously, we
adjust ωx such that kF ≈ 1.1 in the trap center to ensure the
BCS coherence length ξ ¼ kF=πΔ≳ dx, so that topologi-
cal defects, like quantum vortices, can be numerically
resolved. The double-well geometry of the Josephson
junction is engineered by adding a Gaussian barrier
VbðrÞ ¼ V0e−2x

2=w2

along the x axis. The initial configu-
ration corresponds to a slight density imbalance between
the two halves of the cloud, which we achieve by adding a

slight linear tilt to the potential V tðrÞ ¼ αx, when generat-
ing a stationary solution. Then, we remove the tilt and allow
the system to follow its dynamics. The number of evolved
quasiparticle states is n ≈ 5 × 105, which results in solving
about 106 of coupled and nonlinear PDEs, which we treat
by high-performance computing techniques.
We investigate the dynamics of Josephson atomic

junction for two interaction regimes: the BCS regime with
1=askF ≃ −1 (which extends deeper into this regime than
recent experiments [8]) and the unitary limit 1=askF ≃ 0.
Guided by previous works [9,15,16] in the BEC regime
(1=askF > 1) we consider relatively narrow barriers of
width wkF ¼ 5.2 (which corresponds to a value of w=ξ ¼ 4
in theUFG and 1.6 in the BCS limit) and values ofV0=μ < 1
(which, in the BEC limit, were found to maximize vortex
detection likelihood).Within such parameter space, we study
system dynamics as a function of two control parameters:
(i) the barrier height scaled to the (mean) chemical potential
V0=μ and (ii) the initial population imbalance z0 ≡ zðt ¼ 0Þ,
where zðtÞ ¼ ½NRðtÞ − NLðtÞ�=Ntot with NL (NR) the num-
ber of atoms in the left (right) reservoir. The visualization of
the numerical setup is presented in Figs. 1(c) and 1(d). We
have also checked that conclusions are unchanged if we
compare results between regimes for fixed w=ξ ¼ 4.
Dynamical regimes in a Fermi superfluid.—

Investigation of the dynamical regimes is performed by
studying the temporal profiles of the relative imbalance zðtÞ
and its canonically conjugated variable ΔϕðtÞ≡ ϕLðtÞ −
ϕRðtÞ [see Figs. 1(a) and 1(b)], where ϕLðRÞ is the phase of
the order parameter extracted at a point in the left (right)
side of the barrier. Note that the applied frameworks
conserve the total energy Etot [41]. Here, we consider
transfer of energy stored in the junction to other degrees of
freedom. The energy stored in the junction is quantified
by the sum of two terms: ½ECN2

tot=8�z2ðtÞ and EJ½1−
cosΔϕðtÞ�, where EJðCÞ is the Josephson (capacitive)
energy [14]. The nondissipative or coherent regime is
characterized by sinusoidal oscillations with constant
amplitude of both the variables zðtÞ and ΔϕðtÞ
[9,12,13,15,42], while dissipative dynamics is reflected
by the decaying amplitude for zðtÞ. As expected, the
coherent oscillations are observed in both the BCS and
UFG regimes for sufficiently low z0 or V0=μ [black lines in
Figs. 1(a) and 1(b)].
At a critical value of the barrier height or the initial

imbalance, the system is expected to transition to a
dissipative regime [7–9,15], characterized by a damping
of the population imbalance oscillation amplitude and by
the relative phase showing 2π jumps, called phase slips. In
the BEC limit, such dissipative dynamics have been
interpreted in terms of the generation of vortices and sound
waves [9,15]. A characteristic of such dissipative dynamics
is the presence of kinks in zðtÞ, due to the backflow caused
by the generation of quantum vortices. Similar dissipative
features, with corresponding 2π phase jumps in the relative
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phase, are evidently present in the population dynamics in
Figs. 1(a) and 1(b) in both the UFG and BCS limits.
Despite very similar features in the above observables, a
fundamental difference becomes apparent when consider-
ing the corresponding density distribution snapshot in the
broader barrier region [Figs. 1(c) and 1(d)] close to the
phase-slippage moment. While both vortex pairs and sound
waves are found to propagate into the left reservoir in the
UFG limit (being more visible for low values of V0=μ), the
corresponding BCS limit instead displays only barely
visible (low amplitude) sound wave propagation and no
discernible evidence of vortex generation [see also Fig. 3],
a feature which is consistent across all simulations executed
in the BCS regime. This points toward potentially different
origin and underlying mechanisms of dissipation. Another
generic feature that we find is that as we sweep the
interaction from the UFG to BCS limit, for fixed barrier
height V0=μ, the critical imbalance delimiting the coherent
from the dissipative regime becomes smaller. Moreover,
analysis of the current-phase relation at the respective
critical imbalances (at V0=μ ¼ 0.8) reveals a lower BCS
density current compared to UFG regime, consistent with
the observed critical current suppression [7,8,10,43].
Dissipative mechanisms.—It is well known that matter

flow can be dissipationless in the presence of an obstacle
(e.g., in the form of a barrier), provided its speed does not
exceed a critical value. Specifically, the Landau criterion
states that if quasiparticle energy in the reference frame of
the obstacle, εðpÞ þ p · vs, becomes negative, then the
excitations carried by this quasiparticle can be created
spontaneously. Here, by εðpÞ we denote the quasiparticle
energy of momentum p in the reference frame where the
superfluid is at rest and vs is the speed of the flow. The most

common type of low-energy excitations are phonons where
εðpÞ ¼ cp and c is the speed of sound. The phonons can
be emitted spontaneously when vs > c. The speed of sound
is related to the equation of state c2 ¼ ð∂P=∂nÞjS ¼
ðV2=NÞð∂2E=∂V2ÞjS. For the UFG where E ¼ ξ0EFG ¼
ξ0

3
5
NtotεF, we have cUFG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiðξ0=3Þ

p
vF, where vF is the

Fermi velocity. Using BCS theory where E ¼ EFG −
ð3NΔ2=8εFÞ with Δ=εF ¼ ð8=e2Þeπ=2askF , we obtain

cBCS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
−
12

e4
eπ=askF

��
π

3askF

�
2

−
2π

3askF
þ10

9

�s
vF: ð2Þ

Qualitatively, the speed of sound increases as we quench
the interaction toward the deep BCS regime.
Besides creating phonons, for Fermi systems we may

break Cooper pairs and induce quasiparticle excitations
with energy εðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp2=2Þ − μ�2 þ Δ2

p
. Then the

Landau criterion leads to a distinct critical velocity,

associated with pair breaking, vpb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
− μ

q
.

For the UFG, where μ=εF ¼ ξ0 and Δ=εF ≈ 0.5, one finds
vpb ≈ cUFG ≈ 0.36vF [18,44], while in the BCS regime
where Δ is exponentially small and μ ≈ εF, we obtain
vpb ≈ ðΔ=2εFÞvF ≪ cBCS. Thus, we expect that the pair-
breaking mechanism will be dominant in the BCS regime.
The critical velocities were studied in Refs. [19,45–49].
In Fig. 2 we present the flow velocity inside the barrier,

vðtÞ≡ jvð0; tÞj, normalized to the local value of the Fermi
velocity, vFðtÞ ¼ ½3π2nð0; tÞ�1=3, and compare it to the
characteristic scales. The velocity field is extracted via
vðr; tÞ ¼ jðr; tÞ=nðr; tÞ. If the flow remains below both the
speed of sound and the pair-breaking velocity, the

(d)

(a) (b)

(c)

FIG. 1. Dynamical regimes for a fermionic Josephson junction. The time evolution of population imbalance zðtÞ [(i), (iii)] and relative
phase ΔϕðtÞ [(ii), (iv)] in UFG (a) and BCS limit (b). The system can be driven into the dissipative regime either by increasing the value
of the initial imbalance z0 at fixed barrier height V0=μ ¼ 0.6 (i), (ii) or by increasing the barrier strength while keeping the initial
imbalance unchanged (iii), (iv). Snapshots of density distributions nðx; yÞ (scaled to its maximum value nmax) at a time close to the
phase-slippage event (abrupt change of Δϕ by 2π) for UFG (c) and BCS (d), respectively. In these simulations we used z0 ¼ 0.15 and
V0=μ ¼ 0.6. The white dashed rectangular box indicates the barrier region with the enlarged plot on the right-hand side.

PHYSICAL REVIEW LETTERS 130, 023003 (2023)

023003-3



superfluid continues its motion without dissipation, oscil-
lating coherently between the two reservoirs. However, the
dynamics changes if the flow reaches one of the critical
values. Consider maximum value of the flow vmax≡
max½vðtÞ�. In the strongly interacting limit [Fig. 2(a)],
we find that the maximal detected value is approximately
equal to the speed of sound vmax ≈ c. Whenever the local
speed approaches it, quantum vorticity is nucleated (here in
the form of a vortex-antivortex pair), and the flow is
reduced abruptly. Contrarily, in the BCS limit, the maximal
detected speed is much lower than c, but simultaneously

larger than the pair-breaking velocity vpb calculated pre-
viously; i.e., vpb ≲ vmax < c. While transient configura-
tions where the velocity field exhibits swirling patterns
inside the barrier are found [inset to Fig. 2(b)], nonetheless
the phase of the order parameter does not exhibit the
expected topology. In other words, throughout our simu-
lations in the BCS limit, even though the relative phase
shows 2π jumps, we do not unambiguously detect winding
of the phase by 2π in regions where the velocity field
swirls.
The change of the dissipative mechanism becomes more

evident in the case of initial imbalances z0, much higher
than the critical value. Figure 3 demonstrates the system
dynamics for z0 ¼ 15% and 30%, while keeping other
parameters as before. We observe a fast drop of zðtÞ, which
starts to oscillate (irregularly) around z ¼ 0. In the case of
the BCS limit [Fig. 3(c)], we find that the amplitude of the
residual oscillations is much smaller than in the UFG case
[Fig. 3(a)], suggesting that more dissipation is present in
the former case; see Ref. [41] for more details. As before,
for strong interactions, we observe that quantum vortices
and sound waves take away the energy to the bulk
(typically the sound wave is generated due to vortex pair
annihilation or during its propagation in a density gradient
[9,15]). Contrary to that, in the weakly interacting case,
only relatively small amplitude sound waves are observed.
Such a picture is best visualized in the renormalized density
carpet plots [Figs. 3(b) and 3(d)], in which the color
represents the instantaneous density value along the x axis
after subtracting the initial value δnðx; tÞ≡ nðx; 0; tÞ−
nðx; 0; 0Þ.
In order to quantify the importance of the pair-breaking

mechanism, we calculate the change in the condensation

(a) (b)

FIG. 2. The time evolution of the flow velocity in the barrier,
scaled to the local Fermi velocity vðtÞ=vFðtÞ in the UFG (a) and
the BCS limits (b). Dashed (black) lines demonstrate case of
coherent oscillations, while solid (blue and red) lines dissipative
dynamics. The gray dotted horizontal lines indicate the speed of
sound c and the pair-breaking velocity vpb. These data are for
fixed wkF ¼ 5.2 and fixed V0=μ ¼ 0.6. Insets show velocity
fields vðtÞ topology (arrows) in the barrier regions for the
dissipative cases and time moments indicated by (gray) dots.
The color map visualizes jΔðx; yÞj. The arrows indicate separa-
tion of the scales c and vpb in the BCS regime.

(a) (b) (c) (d)

FIG. 3. The time evolution of the relative imbalance zðtÞ (top) and the condensation energy EcondðtÞ (bottom) for the unitary (a) and
BCS (c) limits. The data are taken in the dissipative regimes for V0=μ ¼ 0.6 and wkF ¼ 5.2 and for two different values of the initial
imbalance z0. For the case z0 ¼ 15% we show dynamics within selected time interval of the relative imbalance zðtÞ and the relative
phase difference ΔϕðtÞ (top) together with the carpet plot δnðx; tÞ≡ nðx; 0; tÞ − nðx; 0; 0Þ (bottom) for the UFG (b) and BCS
(d) regimes. Dashed lines in the carpet plot indicate trajectory for objects moving with speed of sound x ¼ �ct. In the UFG the carpet
plot reveals directly both the vortex dipoles and the sound waves.
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energy. According to the BCS theory, the appearance of a
Cooper-pair condensate lowers the energy of the (uniform)
system by ð3Δ2=8εFÞNtot. Using the local density approxi-
mation, we define the condensation energy for the non-
uniform system as Econd ¼

R
3
8
½jΔðrÞj2=εFðrÞ�nðrÞdr. The

change of Econd is shown in the bottom panels of Figs. 3(a)
and 3(c). The difference between the UFG and the BCS
regimes is now evident. For the unitary gas, the condensa-
tion energy can, to good approximation, be regarded as a
conserved quantity during the dynamics. Only for the most
extreme case studied by us, z0 ¼ 30%, we find that it drops
by a few percent (over our probed timescale tεF). On the
other hand, for the BCS gas, the energy stored in the
condensate decreases noticeably in time. For example, in
the analogous case z0 ¼ 30%, we observe a drop of Econd
by about half, a striking manifestation of the depletion of
the Cooper-pair condensate. It has to be noted that although
the results presented above indicate the main mechanisms
of energy dissipation, the accurate determination of the
dissipation rate would require longer trajectories to be able
to extract irreversible energy transfer.
Conclusions.—The change in the underlying physical

mechanism giving rise to dissipative dynamics in Fermi
superfluids from vortex nucleation to Cooper-pair breaking
can be deduced based on simple arguments related to the
ordering of the velocity scales c and vpb. However, it does
not provide information on how this change will be
manifested in the real-time (population) dynamics.
Surprisingly, global characteristics like imbalance or the
phase difference, which are used as primary probes in
experiments, display similar patterns irrespectively of the
operating mechanism. Their time dependence is similar to
the experimental findings [7,8]. At unitarity, the main
dissipative mechanism is related to the phase slippage,
caused by emission and propagation of quantum vortices,
and associated sound waves, as observed experimentally
(through a barrier removal protocol which enhances vortex
lifetime). Probing deeper in the BCS regime (1=askF ≃ −1)
than is presently accessible in experiments (1=askF ≃ −0.6),
we go beyond indirect experimental measures, such as the
observed critical current suppression [8], to quantify pair
breaking in terms of a decaying Cooper-pair condensation
energy, finding its role to be enhanced with increasing
population imbalance beyond the critical value, and to
dominate the picture without any discernible direct role of
vortex dynamics in this regime. In both cases, the emitted
energy is ultimately converted into heat. Our Letter provides
a deeper understanding of dissipation mechanisms in ultra-
cold fermionic superfluids across the BCS-BEC crossover.
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