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Self-interacting vectors are seeing a burst of interest where various groups demonstrated that the field

evolution ends in finite time. Two nonequivalent criteria have been offered to identify this breakdown:

(i) the vector constraint equation cannot be satisfied beyond a point where the breakdown occurs, (ii) the
dynamics is governed by an effective metric that becomes singular at the breakdown. We show that
(1) identifies a coordinate singularity, and can be removed by a change of coordinates. Hence, it does not
signify a physical problem, and cannot determine the validity of a theory.
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Self-interacting vector fields find applications in many
areas of physics. One can find them in gravity and
cosmology [1-17], plasma physics [18], astrophysics
[19-22], and effective models of photon-photon inter-
actions [18,23,24]. Particularly in the gravity and cosmo-
logy communities there have been attempts to classify all
ghost-free generalizations of the Proca theory [25-29].

However, there is a growing body of literature demon-
strating that nonlinear vector field theories, even the
simplest conceivable extensions of the Proca theory, suffer
from fatal problems in terms of time evolution [1,30-32].
Most recently, it was shown that these problems can appear
in an unusual way, where the self-interacting vectors can
evolve without any issue for a finite time, but the time
evolution breaks down when the field amplitude reaches
certain finite values [30-32]. This offers new purely
theoretical tests of field theories, which can help guide
theory building in the aforementioned research areas.
Despite these exciting developments, there are still major
points of confusion in the literature, which we aim to
address in this Letter.

The breakdown of the time evolution we mentioned has
been identified by two separate methods in the most recent
studies. In the first, which we will call the constraint
criterion, one uses the fact that the time evolution of the
vector is a constrained one, and there comes a point where
the satisfaction of the constraint becomes impossible,
which is interpreted as the breakdown of time evolution
[30,31]. In the second, which we will call the metric
singularity criterion, one shows that the dynamics of the
vector is governed by an effective metric which can become
singular due to its dependence on the vector field itself, and
time evolution is not possible beyond such a singular
point [1,32].

In the following, we will explicitly demonstrate that the
constraint criterion indicates a coordinate singularity that
does not point to a physical problem, i.e., the theory can
evolve beyond such a point if appropriate coordinates are
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utilized. Hence, this approach does not indicate a physical
breakdown of self-interacting vector field theories, or other
theories for which similar criteria exist.

The constraint criterion might seem to be the more
natural one if one uses the common technique of 3 + 1
decomposition for time evolution, and it can even seem to
be the only criterion on the flat Minkowski background
where the effective metric and its curvature might be easily
overlooked. Hence, the coordinate-dependent nature of the
constraint is subtle, and likely contributed to the confusion
in the literature [33]. As a result, even the fact that there are
two separate criteria, let alone they are nonequivalent, has
not been appreciated so far. Overall, our findings are crucial
in obtaining accurate diagnostics for the problems of self-
interacting vectors or other constrained fields.

We use the “mostly plus” metric signature and ¢ = 1.
Spacetime indices are in Greek, p,v =0,1,...,d, spatial
ones in Latin i, j =1, ..., d.

Singularities of the nonlinear Proca theory.—Let us
first overview the problems of self-interacting vectors in
terms of the two criteria above following Coates and
Ramazanoglu [32].

The simple extension of the Proca theory we will study is
given by the action

V(X?)
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with F,, =V, X, -V, X, and X* =X,X* for the real
vector field X,. The fields live on a fixed curved spacetime
with metric g,,, which is the metric that lowers and raises
tensor indices, and defines the connection. This leads to the
equation of motion

V, F* = pu*zX", (2)
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where 7 =2V'/u? =1+ 1X? and V' = (dV/dX?). This
also implies the (generalized) Lorenz condition

V,V, i =0 = V,(zX*) =0, (3)

due to the antisymmetry of F,,. Even though we chose a
specific form of V(X?), a generic choice leads to similar
conclusions [30-32].

The key observation for the metric singularity criterion is
that Eq. (2) can be put into the form [32,34]

G VVPX, + ... =0 (4)

with the help of the Lorenz condition, where the ellipses are
lower order terms in derivatives. In other words, the
principle part of the differential equation is the wave
operator for the effective metric

g,uy = 29w + ZZ/XﬂXy, (5)

which controls the dynamics. Strictly speaking, this is only
possible in 1+ 1D, however it can be shown that the
effective metric still governs the dynamics in any dimen-
sion, through other methods [32].

Equation (4) means the behavior of solutions are as if X,
is evolving in a spacetime with metric g,,. The effective
metric depends on the vector field itself, hence, can become
singular or change its signature at finite values of X, and
the time evolution can break down in finite duration even if
gu 1s regular [1,32]. Hence, the time evolution cannot
continue to the future of such a point, the same way it
cannot continue to the future of a singularity in the
spacetime metric. The singularity of g,, can be mathemati-
cally determined by finding the points with

where g = det(g,,), z3 = 1 + 3AX?. Thus, hyperbolicity is
lost when z3 = 0, which always occurs before z = 0 for
physically meaningful initial data [32]. In general, vanish-
ing of the determinant of a metric can be a coordinate effect,
however, it is known that this case corresponds to a
curvature singularity in g,,, hence time evolution indeed
cannot continue beyond zz3 = 0 in any formulation of the
theory [32].

To understand the constraint criterion, we first note that
the very concept of time evolution requires choosing a
timelike direction on the spacetime manifold. This means
picking a specific coordinate system and a foliation, in its
most common form an expression of the spacetime as a
combination of spatial surfaces stacked in the time direc-
tion [35,36]. This is commonly used with the so-called
d + 1 decomposition in d + 1 dimensions, where tensors
are also expressed in terms of their temporal and spatial
components

ds® = —c?di® +y;;(dx' + pldt)(dx! + pdt),

X, =ng+A, ¢=-nX A =(5+nn)X,

(7)

where n# = a~!(1,—p") is the normal vector field to the
spatial slices.

After some lengthy but standard algebra, the relevant
part of the time evolution equations can be recast as [30]

0ip = PDip — ADa — — 2(Kp — DAY

Na. .. . . .
+ g—“ [AIAID,A; — p(E,A — K ;AIAT + 2A'D,)),
nn

0=D,E'+ pu*z¢p =C, (8)

where E; = (8 + n"n;)n"F,,, the first equation is a result
of Eq. (3), and the second one is the component of Eq. (2)
along n*. Note that the last line, C = 0, called the constraint
equation, does not represent time evolution, but is a
necessary condition which has to be satisfied by the vector
field components on each spatial slice. Further details of
this time-space decomposition can be found in standard
sources [36], but are not essential for our purposes.
It is straightforward to note that d,¢p diverges when

Gun = NNy = —23 + 21A,A" = 0, 9)

which means time evolution cannot continue beyond such a
point, which is the constraint criterion. Our naming of this
criterion is due to the fact that the constraint equation C = 0
ceases to have a unique solution exactly when g,, =0
occurs, which can also be interpreted as the underlying
reason for the problem in the time evolution of ¢ [30,31].

Below, we will demonstrate an explicit example of the
coordinate-dependent nature of the constraint criterion by
considering a wave packet that falls into a black hole. In
one coordinate choice, g; ; = 0 is encountered in finite time
and the time evolution indeed has to be stopped, but the
problem disappears once different coordinates are used.
This clearly shows that the problem indicated by the
constraint criterion is not about the physical nature of
the vector field, but about the shortcomings of the time
evolution method, in this case the particular spacetime
foliation, one chooses. That is, a point with g,, = 0 can be
transformed into one with g;; <O with an alternative
foliation defined by a new normal vector field 7# [32].
This point was conceptually argued by Coates and
Ramazanoglu [32], but no explicit example was known
until now.

Appearance and  disappearance of coordinate
singularities.—What happens when a self-interacting vec-
tor wave packet falls into a black hole? The equivalence
principle would predict that nothing physically dramatic
occurs, since nothing dramatic happens in flat space [32],
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aside from some possible “tidal” effects arising from
nonzero packet size. We will see that this is indeed the
case as far as physics goes, but a thorough demonstration is
quite nontrivial since the constraint criterion is eventually
satisfied in the generic case if we use the most familiar
coordinates. Thus, coordinate singularities appear, but we
will also see that they disappear with a careful choice of
coordinates.

The coordinate-dependent nature of the constraint cri-
terion can be demonstrated on the spacetime of a 1 + 1D
black hole. The metric we study is simply the rt section of
the Schwarzschild metric

ds* = —f(r)dt* + dr*/f(r), (10)
= Q*(x)(—df* + dx?), (11)

where f(r) =1—(2M/r). In the following, we will use
the conformally flat formulation on the second line,
G = anﬂv, where the fortoise coordinate x is defined
through dx = dr/f(r), and the conformal factor is

Q(x) = /f[r(x)]. —00 < x < oo covers the region outside
the horizon, » > 2M. The causal structure of this space-
time is essentially the same as the 3 + 1-dimensional
Schwarzschild black hole.
Metric (11) provides the 1 + 1 decomposition
¢=—-a'X,=Q7'X, A, =X,. (12)
The fact that g, @ and y,, all vanish on the horizon due to
Q(—o0) =0 will be a central point in the subsequent
discussion.

We used the same methods as in Coates and
Ramazanoglu [32] to evolve NPT on the spacetime (11),
which were in turn adapted from Clough et al. [30]. We
scale field values and coordinates to set > = 1 = 1 (we are
only interested in 4 > 0), which means the only physically
meaningful parameter is the dimensionless My. Our results
are for Mp = 1, but the outcome is qualitatively similar for
any Mu, for which only timescales and length scales
change. In all cases, the only nonvanishing part of the
initial data is a narrow Gaussian for X,(# = 0,x), which
satisfies the constraint equation.

The time evolution of an initially low amplitude wave
packet in the spacetime of (11) can be seen in Fig. 1. In
terms of the vector components X, the evolution looks
mundane (the first row), the ingoing packet attains a
constant amplitude for both X, and X, as it approaches
the horizon. However, one can see a steady growth in g,,,
which eventually satisfies g,, = 0, breaking down the
numerical evolution as we discussed before (second
row). That is, the constraint criterion is satisfied in this
example.

Meanwhile, the effective metric never approaches a
singularity in Fig. 1 as seen in its determinant g, hence,
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FIG. 1. Snapshots of X, and g,, as a time symmetric wave
packet breaks up into two pieces, one falling into a black hole and
the other moving out in tortoise coordinates [Eq. (11)], u> =1,
A = 1. Our discussion concentrates on the ingoing piece (moving
to the left), which eventually causes a coordinate singularity,
Gnn = 0. First row: The field components X,, X, have steady
amplitudes. Second row: g,, = 0 is achieved due to the amplify-
ing effect of ¢/ ~Q7% on the steady values of the vector
components. However, g/g~ 1 does not show any sign of
physical breakdown, implying |X?| is not growing. Third row:
Nongrowth of X?> = Q72X X_ is revealed in the behavior of
X, =X,£X,.

the physical time evolution is completely healthy by the
metric singularity criterion. Note that this is also the case in
flat spacetime when the initial amplitude of the vector field
is low enough [32], as we discussed in the beginning of this
section. In light of these, our aim is showing that g, = 0 is
a coordinate effect by evolving the same system in other
foliations where g,, = 0 is not encountered.

Let us first understand the singularity arising from g,,,, = 0
better before we see how we remove it. Note that the steady
amplitude of the components of X, easily explains how g,,,, =
0 is reached. Since 7,, = —1 + Q72[—(X,)? + 3(X,)?], the
eventual vanishing of g, is guaranteed, since the Q2 factor
arising from ¢"* grows without bound. Alternatively, in the
1 + 1 formulation, g,, = —1 + [-A,A* + 3¢?], and A* =
YA, = Q%A and ¢ diverge due to the vanishing spatial
metric and the shift, respectively [cf. Eq. (12)].

The second important observation is that /g never
deviates far from 1, which shows the nonequivalance of
the two criteria of breakdown. However, this is also
mathmematically perplexing. Recall that §/¢ only depends
on the norm of the vector field [cf. Eq. (6)], and the fact
that it changes insignificantly means |X?| = Q72|(X,)? —
(X,)?| =| - AA* + ¢*| < 1 throughout the evolution.
However, by our previous argument about the behavior
of the vector field components, unless there is a large
cancellation in (X,)? — (X,)?, we would expect |X?| to
grow as the horizon is approached due to the Q2 factor.
A large cancellation indeed occurs due to the behavior of
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X, =X, + X,, which can be seen in the last row of
Fig. 1, revealing that X_ ~Q? in this region. Thus,
X? = Q72X ,X_ has asymptotically constant amplitude
near the horizon.

The behavior of X,,. can also be understood in
surprising detail by an analytical study of the near-horizon
behavior of the vector field, which shows that any small
amplitude initial data set leads to an ingoing wave with a
roughly constant amplitude for X,, X,, and X2, see the
Supplemental Material [37]. This also proves that g,,, = 0
is encountered generically in this scenario, which was
further confirmed by numerical computation.

We will finally show that the constraint criterion is a
coordinate-dependent one, and the problem it indicates can
be removed by a change of coordinates. Let us consider the
same spacetime in the Cook-Scheel (CS) coordinates [38]

ds* = —F~2dt”? + F*(dr + u*F~2dt')?, (13)

where u = (2M/r) and F? = (1 + u)(1 + u?). The hori-
zon is located at r = 2M.

CS coordinates have the horizon-penetrating property
where the spacetime metric as well as all the terms of
the d+ 1 decomposition, such as a = F, " = u’F~2,
y'"" = F~2, are finite on and inside the horizon. Recall that
the main problem of the tortoise coordinates in the 1 4 1
decomposition was the unrestricted growth of ¢**, a~!, and
y**. Hence, horizon penetration could prevent the growth of
Gnn» and it is something we look for. On the other hand, the
behavior of the CS foliation in the asymptotically far region
r — oo is identical to that of the tortoise or Schwarzschild
coordinates, so the growth problem is not merely moved to
another part of the spacetime.

The evolution of an initially small Gaussian wave packet
of X, using the CS coordinates and the associated foliation
can be seen in Fig. 2. The field components X, still have
steady amplitudes as they approach the horizon. However,
this time we expect A" and ¢ to be finite at the horizon. This
is indeed the case. g,,, = 0 is avoided altogether in contrast
to Fig. 1, and the evolution can continue until the ingoing
packet reaches the physical singularity. Thus, the constraint
criterion does not indicate any physical pathology in the
time evolution of self-interacting vectors.

The original motivation for introducing the CS coordi-
nates was satisfying the harmonic time slicing condition
which has desirable properties for numerical relativity [38],
but they turn out to be more appropriate for our purposes as
well. We should emphasize that the CS coordinates are not
unique in the above respect, coordinates that are finite and
nonzero everywhere aside from the spacetime singularity,
including asymptotic infinity, generally provide similar
results.

Discussion.—Checking for the existence of problematic
degrees of freedom, e.g., ghosts that grow exponentially,
have been an integral part of model building. Indeed, many
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FIG. 2. Snapshots of X, and g,, as a wave packet falls into a
black hole in the Cook-Scheel coordinates [Eq. (13)], u?> =1,
A= 1. The horizon is at r = 2M = 2, marked by the vertical
dotted line. Similarly to Fig. 1, the field components X, , have
steady amplitudes as they approach the horizon. However, A" and
¢ do not grow arbitrarily large thanks to nonvanishing lapse, shift
and spatial metric, and g, = 0 is not encountered anywhere. The
initial amplitude of X, is higher than that of X, in Fig. 1 for this
sample case.

vector and tensor field theories have been ruled out this
way, or their most extensive generalizations were con-
structed by following such guidelines [26,39]. The novelty
of the two criteria we considered is that the theory does not
carry such a problematic degree of freedom in all parts of
the phase space, rather, the vector can evolve without issue
for a finite time, and in some cases even indefinitely, but the
time evolution can dynamically reach a point where it
cannot be continued any more. This can be useful in
guiding the efforts to explore the extensions of our current
models in gravity, cosmology, high energy physics, and
effective field theories in general, and examples are known
in scalar-tensor theories [40-42]. However, it is important
to ensure that the appearance of this dynamical breakdown
is correctly identified so that accurate theoretical conclu-
sions can be achieved.

One method for such identification has been checking
whether the constraint equation of the theory can be
unambiguously satisfied at all times, and we have shown
that this criterion does not signify a physical breakdown.
Rather, it reflects a shortcoming of the specific evolution
scheme, Eq. (8), for a specific coordinate choice. The
problem completely disappears when we use more appro-
priate coordinates. The coordinate-dependent nature of the
constraint criterion can be especially hard to notice if one
works on a flat background spacetime as is usually the case
in high energy theory [31], where the idea of a foliation
beyond the trivial one in Minkowski coordinates might
even look unnatural and unnecessarily contrived. Though,
our results make it clear that nontrivial foliations and
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curvilinear coordinates are essential for the study of self-
interacting vectors.

The fact that the constraint criterion is equivalent to
Gnn = W*'n”g,, = 0 already gives a hint about the foliation
dependence, since the choice of n# defines the foliation.
Furthermore, the constraint itself, C, is an object that
lives on the spatial hypersurfaces, hence the form of the
equation C = 0 and whether it has a unique solution also
depends on how we choose coordinates and foliate our
spacetime.

d + 1 decomposition is ubiquitous in formulating the
time evolution of tensor field theories in curved space, and
highlights the constrained nature of the dynamics of the
vector fields. This likely played a role in the misidentifi-
cation of the constraint as the culprit of a physical break-
down. Nevertheless, we expect the results of the existing
studies that used the constraint criterion to be essentially
valid in that the time evolution indeed breaks down in
their examples, even though it occurs at a different
spacetime point which may or may not be covered in
the computation.

We would want to emphasize that, even though the
constraint criterion detects a coordinate singularity, self-
interacting vector time evolution does physically break
down as well, which can be identified using what we called
the metric singularity criterion, g,, becoming singular. It is
also known that in certain parts of the (u?,1) parameter
space, one is guaranteed to encounter a coordinate singu-
larity before the physical breakdown occurs if the evolution
method of Eq. (8) is followed. Thus, it is crucial to use
appropriate coordinates or novel time evolution techniques
to circumvent such spurious problems [32].

We removed the coordinate singularity by using an
alternative coordinate system that is built in advance.
However, more general and less symmetric evolutions
likely require an adaptive foliation scheme that updates
the normal vector n*, hence the lapse and the shift,
dynamically as the vector field evolves in time [32].
Implementation of such schemes is a major future endeavor
in the study of self-interacting vectors.

There are other avenues of exploration for the well-
posedness of self-interacting vector field theories. The
physical breakdown of the theory is a problem if we take
it at face value, but it is sometimes possible to view action
(1) as an effective field theory which is to be completed in
the ultraviolet section. Then, the problem is understanding
how and if various issues we raised are resolved in the
parent theory, which is actively studied [43-45]. On
another avenue, it is still not known how backreaction
affects the findings, since all results so far concentrated on
fixed backgrounds.

We thank Will East for many enlightening discussions.
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