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A gas of interacting particles is a paradigmatic example of chaotic systems. It is shown here that, even if
all but one particle are fixed in generic positions, the excited states of the moving particle are chaotic. They
are characterized by the number of principal components (NPC)—the number of integrable system
eigenstates involved into the nonintegrable one, which increases linearly with the number of strong
scatterers. This rule is a particular case of the general effect of an additional perturbation on the system
chaotic properties. The perturbation independence criteria supposing the system chaoticity increase are
derived here as well. The effect can be observed in experiments with photons or cold atoms as the decay of
observable fluctuation variance, which is inversely proportional to NPC and, therefore, to the number of
scatterers. This decay indicates that the eigenstate thermalization is approached. The results are confirmed
by numerical calculations for a harmonic waveguide with zero-range scatterers along its axis.
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Evolution of integrable systems is completely predict-
able, and, according to the Kolmogorov-Arnold-Moser
theorem (see [1]), weak perturbations do not affect this
property. There are numerous examples of such classical
and quantum systems, including stellar mechanics, hydro-
gen atoms, and many-body systems, both realized in
experiments, such as the quantum Newton cradle [2,3]
and cold-atom breathers [4,5] (see [6–9] for the theoretical
description) and those waiting for realization [10].
When the integrability-lifting perturbation is sufficiently

strong, the system evolution becomes unpredictable.
Nevertheless, a completely chaotic system relaxes to a state
described by the Gibbs ensemble, thanks to the eigenstate
thermalization mechanism—eigenstate expectation values
are equal to microcanonical averages at the eigenstate
energy—introduced in Refs. [11,12] (see also [13,14], the
experimental work [15], the review [16], and the references
therein). In contrast, integrable systems relax to states
described by the generalized Gibbs ensemble [17–21].
However, a generic system lies between integrable and

completely chaotic systems [22–49]. The incomplete chaos
can be related to weak integrability-lifting perturbations
[29,31,32,34,47,48] or phase-space separation in both
classical and quantum systems. It can have also a specific
quantum nature, such as many-body localization [33,37,49]
or zero-range interactions [22–24,26–28,30]. Chaoticity of
such incompletely chaotic systems can be characterized by
the inverse participation ratio (IPR) [28,31,33,50]. Its
inverse—the number of principal components (NPC)—
estimates the number of integrable system eigenstates
comprising the nonintegrable one. IPR ranges from 1 for
integrable systems to 0 for completely chaotic ones. It
governs the expectation values after relaxation in incom-
pletely chaotic systems with no selection rules [28,31].

This regularity has been confirmed in different systems [41].
The fluctuations of expectation values over eigenstates are
strong for integrable systems and vanish in completely
chaotic ones, according to the eigenstate thermalization
hypothesis. These fluctuations, too, are governed by
IPR [32].
Exploration of the integrability-eigenstate thermalization

crossover is of special interest, and the means of the system
chaoticity prediction based on its Hamiltonian, with no
numerical calculations, would be very useful. The expo-
nential decay of fluctuations in many-body systems with the
number of particles was predicted in Ref. [12]. However,
this sharp decay complicates the exploration due to the high
sensitivity of the system chaoticity to the number of
particles. Analytical predictions for single particles with
random-matrix perturbations (see [31] and the references
therein) are applicable to strong perturbations (and chaos)
only. The system chaoticity can be modified by an addi-
tional perturbation; e.g., it can transform an integrable
system into a chaotic one. However, the effect of an
additional perturbation on a chaotic system is ambiguous;
e.g., the system integrability can be restored if the additional
perturbation is equal to the integrability-lifting one with
opposite sign. The system chaoticity increases when the
additional perturbation obeys the independence criteria
determined here. Then, a linear increase of NPC with the
number of independent perturbations of the same shape is
predicted. Simultaneous decay of expectation value fluctu-
ations indicates that the eigenstate thermalization is
approached. These predictions are confirmed by numerical
calculations for a harmonic waveguide with zero-range
scatterers along its axis. Both NPC and expectation value
fluctuations are specific characteristics of quantum chaos,
and it is unclear if they have classical counterparts.
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Consider a sequence of Hamiltonians Ĥs ¼ Ĥ0þP
s
s0¼1

V̂s0 . Here, the integrable one Ĥ0 has the eigenstates
jni and eigenenergies En labeled by a proper set of
integrals of motion n. The integrability is lifted by the
perturbations V̂s0 . The eigenstates jαsi of the nonintegrable
Hamiltonians Ĥs are labeled in the increasing order of their
eigenenergies Eαs . If Ĥs is invariant under some trans-
formations, sets of jαsi with certain symmetry have to be
considered separately. For example, there may be eigen-
states with certain angular momentum for rotational sym-
metry of Ĥs, or certain parity for inversion invariance, or
certain quasimomentum for spatial periodicity. Such sets of
eigenstates can be described by different Hamiltonians,
e.g., with separated angular momentum for rotational
symmetry, or restricted to the unit cell for spatial perio-
dicity. Such Hamiltonians can contain fewer perturbations
than the original one Ĥs. Only the case when all Ĥs have
the same invariance group is considered.
Each eigenstate jαsi can be expanded in terms of jni, and

the strength function

WsðEn; EαsÞ ¼ hjhnjαsij2i ð1Þ

is the probability averaged over states with a fixed energy
difference (see [51]). The relation between the strength
functions for jαsi and jαs−1i,

WsðEn; EαsÞ ≈
X
Eαs−1

Ws−1ðEn; Eαs−1Þhjhαs−1jαsij2i; ð2Þ

is obtained (see [51]) neglecting the interference terms.
This approximation is applicable whenever the perturbation
V̂s is independent of V̂s0 with s0 < s, i.e.,

X
n;n0

hnjV̂sjn0ihn0jV̂s0 jni ≪
X
s00

X
n;n0

jhnjV̂s00 jn0ij2: ð3Þ

The summations over n and n0 in the microcanonical
interval (see [51]) lead to the Berry autocorrelation function
[56]. It is localized within the characteristic de Broglie
wavelength determined by the characteristic eigenstate
energy. Condition (3) is satisfied, for example, if the spatial
separation between local potentials exceeds the character-
istic de Broglie wavelength (see [51]). (The effect of
spatially separated perturbations on certain characteristics

of energy spectra was analyzed in Ref. [57].) Other
examples are the angular-dependent potentials with no
common spherical harmonics in their expansions, such as
different terms in multipole expansion, and the potentials of
different parity (see [51]).
The relation (2) means that an addition of an independent

perturbation increases the number of the integrable system
eigenstates involved to the nonintegrable one (see Fig. 1).
This intuitive picture illustrates the quantitative relation
presented below.
Since WsðEn; EαsÞ should decay as ðEn − EαsÞ−2 in the

limit jEn − Eαs j → ∞ (see [51]) but has no singularities as
En and Eαs never coincide, the Lorentzian profile

WLðE;ΓÞ ¼
1

π

Γ
E2 þ Γ2

ð4Þ

is a natural choice for the continuous strength function
WsðEn; EαsÞ ≈WLðEαs − En;ΓsÞΔE. Here, ΔE is the aver-
age difference between eigenenergies in the vicinity of Eαs .
Such a strength function has been applied to systems with
strong random-matrix perturbations [31,58–61], when the
profile contains many energy levels and Γ can be evaluated
using the Fermi golden rule. On the integrability-chaos
crossover, explored here, the profile may contain only a few
levels and the Fermi golden rule can be inapplicable, but the
strength function with some Γ retains the necessary proper-

ties. The averaged IPR ηs ≡P
n jhαsjnij4

αs
(where the

overbar means the microcanonical average over the states
αs) is related to the Lorentzian width Γs as (see [51])

ηs ¼
�
2

3

�
ΔE
2πΓs

; ð5Þ

where the factor 3 is chosen for the time-reversal (T)
invariant and PT-invariant systems (where P is the inver-
sion) and 2 is chosen otherwise. For the fixed integrable
Hamiltonian Ĥ0 determining the energy difference ΔE,
Eq. (5), together with the relation Γs ¼ Γs−1 þ Γ0 (see
[51]), leads to the recurrence relation for NPC η−1s :

η−1s ¼ η−1s−1 þ ν: ð6Þ

The parameter ν is approximately independent of s if the
chaotic properties of jαsiweakly depend on s and the shape
of V̂s is independent of s (as for strong scatterers with the
same strength). Then, Eq. (6) provides a linear dependence
η−1s ¼ η−12 þ ðs − 2Þν of NPC on the number of scatterers.
An additional independent perturbation increases NPC
even if its value is so high that the system can be considered
as a completely chaotic one.
The prediction (6) is tested for models where the

integrability of a particle in a potential with separable

FIG. 1. A chart of connection between eigenstates. The number
of the integrable system eigenstates n connected to the non-
integrable ones increases from 4 to 5 due to an additional
perturbation.
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coordinates is lifted by s fixed zero-range scatterers. Other
examples of such models are flat orthogonal billiards—
multiscatterer generalizations of the Seba billiard [22].
Their energy spectrum properties were analyzed for up
to six scatterers [23,24,43]. Scattering in a harmonic
potential was analyzed in Ref. [62]. The set of scatterers
is a particular case of the rank-s separable potential V̂s0 ¼
Vs0 jF s0 ihF s0 j with the form factors jF s0 i. For such poten-
tials, the eigenstate expansion coefficients can be expressed
as (see [51])

hnjαsi ¼
Xs

s0¼1

Vs0
hnjF s0 ihF s0 jαsi

Eαs − En
ð7Þ

in terms of s overlaps hF s0 jαsi which obey the set of linear
equations

Xs
s00¼1

�
Vs00

X
n

hF s0 jnihnjF s00 i
Eαs − En

− δs00s0

�
hF s00 jαsi ¼ 0: ð8Þ

This system has nontrivial solutions if the determinant of
its matrix is equal to zero. Then the eigenenergies Eαs are
roots of the determinant. High-rank separable potentials can
also approximate long-range, e.g., dipole-dipole, ones [63].
This approximation was used for energy spectra calculation
[64].
The present models are generalizations of the single-

scatterer model [26–28,30]. The integrable Hamiltonian
contains the kinetic energy and the radial harmonic
potential with the frequency ω⊥:

Ĥ0 ¼
ℏ2

2m

��
1

i
∂

∂z
− A

�
2

−△ρ

�
þmω2⊥ρ2

2
; ð9Þ

where z and ρ are the axial and radial coordinates,
respectively, m is the particle mass, and A is a vector
potential. The discrete energy spectrum is provided either by
the periodic boundary conditions (PBCs), hzþ Ljαsi ¼
hzjαsi, or by a hard-wall box, hz¼ 0jαsi¼ hz¼Ljαsi¼ 0.
The form factors of the separable perturbation are
hrjF s0 i ¼ δregðr −Rs0 Þ, where δregðrÞ is the Fermi-Huang

pseudopotential and the scatterer position Rs0 ¼ ð0; 0; zs0 Þ
has the zero radial component (see Fig. 2). The Hamiltonian
Ĥ is rotationally symmetric along the waveguide axis, and
the perturbation affects only the states with zero angular
momentum. Then, only products jnli of the axially sym-
metric wave function jni of two-dimensional harmonic
oscillator and (for PBCs) a plane wave with the momentum
2πℏl=L are considered here. For a hard-wall box, the
standing waves with the momentum πℏl=L replace the
plane waves (see [51]).
Unlike a flat billiard with a constant energy density of

states, in the present model Eα ∝ α2=3, as for a three-
dimensional free particle, and the energy density of states

∂α=Eα ∝ E1=2
α increases with the energy. The logarithmic

asymptotic freedom [23] found for flat billiards is related to
decreasing effective couplingVeff ∝ 1= logE. However, it is
a specific property of the systems with Eα ∝ α. If Eα ∝ αγ

(γ ≠ 1), one can see from the derivation [23] that Veff ∝
E1−1=γ has the same energy dependence as the energy
difference between the states ∂Eα=∂α ∝ E1−1=γ . Then, the
present model, as well as a generic system with γ ≠ 1, does
not show the asymptotic freedom.
In the absence of the vector potential, A ¼ 0, the energy

spectrum of the integrable Hamiltonian is degenerate:
Enl ¼ En−l. The degeneracy will be lifted by any potential
with undefined parity. The vector potential lifts it as well,
with no complication of the wave functions. However, the
Hamiltonian loses the T invariance.
Four models are considered here. The nonsymmetric

model is T noninvariant, and the scatterer positions z1 ¼ 0,
zs0 ¼ ðs0 − 1þ δs0 ÞL=s ðs0 > 1Þ have no symmetry due to
random shifts −0.25 ≤ δs0 < 0.25 chosen once for each s.
The symmetric model with zs−s0þ1 ¼ zs − zs0 and equal Vs0

is PT invariant, where P is the inversion over zs=2 (this
model is not P invariant, as Ĥ0 is not P invariant if A ≠ 0).
The T-invariant model has A ¼ 0 and the same scatterer
positions as the nonsymmetric one. Only this model has
degenerate Enl. The three previous models correspond to
PBCs, while the fourth, box model corresponds to the hard-
wall box, has A ¼ 0, and zs0 ¼ ðs0 þ δs0 ÞL=ðsþ 1Þ.
Summation over l in Eq. (8) can be done analytically

(see [51]), leaving a sum over ∼Eα=ðℏω⊥Þ values of n (the
closed-channel contributions with nℏω⊥ > Eα decay
exponentially with n). As Eα ∝ α2=3, calculation of the
system (8) matrix and its solution requires ∼s2α2=3 and ∼s3
operations, respectively. Then α eigenstates are calculated
for α ≫ s3=2 with ∼sα5=3 operations (cf. with ∼α3 oper-
ations required by the direct diagonalization method).
The integrable system is described by two dimension-

less parameters: λ ¼ mL2ω⊥=ℏ, characterizing the aspect
ratio, and the scaled vector potential l0 ¼ LA=ð2πÞ. In
the calculations, λ ¼ π3ð1þ ffiffiffi

5
p Þ ≈ 100 and l0 ¼ 0.25 −

e−4 ≈ 0.232 are expressed in terms of transcendent

FIG. 2. Harmonic waveguide with four zero-range scatterers
along its axis.
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numbers. Approximately the same results are obtained
for any l0 > 0.01. In Figs. 3(a) and 3(c), Vs0 ¼ 106V0 for
all scatterers is in the unitary regime (V0 ¼ 2πℏ5=2

m−3=2ω−1=2
⊥ is the scale of the interaction strength).

Approximately the same results are obtained for any
Vs0 > V0. In Fig. 3(b), Vs0=V0 ¼ 106; 10−1; 10−2; 2 ×
10−3; 10−3; 10−4; 0 for the seven IPR values from left to
right (the points for Vs0=V0 ¼ 106 and 10−1 are almost
indistinguishable). Each point in Fig. 3 represents an
average over the states 101 ≤ α ≤ 106 of the nonintegrable
system.
The plots of NPC [see Fig. 3(a)] as a function of the

number of scatterers for the four models confirm the linear
dependence (6). The linear fits have two model-dependent
parameters: η2, which cannot be predicted by Eq. (6), since
the system with a single scatterer is not chaotic enough,
and ν. In Fig. 3(a), ν ¼ 1.07, 0.7, 0.68, and 0.53 for the
nonsymmetric, symmetric, box, and T-invariant models,
respectively. Taking into account the symmetry-dependent
factors in Eq. (5), we can see that Γ0 is approximately the
same for the first three models.
The Lorentzian width is related to IPR by Eq. (5).

Figure 3(a) demonstrates the linear dependence even when
Γs ∼ ΔE. Therefore, even when the Fermi golden rule is
inapplicable to Γs as the profile contains only a few energy

levels, the strength function can be approximated by the
Lorentzian profile.
The physical implication of the rule (6) is related to the

fluctuations of expectation values hαjÔjαi of an observable
Ô, characterized by their variance VarαðÔÞ ¼ hαjÔjαi2 −
hαjÔjαi2 over the eigenstates jαi. It is proportional to IPR
and the variance for the underlying integrable system

VarαðÔÞ ¼ ηVarnðÔÞ ð10Þ

as was derived, in slightly different form, in Ref. [32]. The
applicability criteria of this relation can be determined
using the fact that it can also be derived in the same way as
the relation between the initial, thermal, and relaxed
expectation values (7) in Ref. [28] by replacing the density
matrix by the observable. Then Eq. (10), like the relation
(7) in Ref. [28], is applicable to perturbations with no
selection rules. The relation (10) was compared with
numerical results [32] for a many-body system with
two-body interactions. However, such systems do have
selection rules, as each two-body interaction conserves
quantum numbers of other particles. It is probably the
reason why the numerical results [32] were described by
Eq. (10) only up to some energy-dependent factor. Systems
with separable perturbations have no selection rules, and
the relation (10) describes the dependence of variances on
the number of scatterers and interaction strength for four
observables [see Figs. 3(b) and 3(c)]. The observables are
the axial momentum hnljp̂axjn0l0i ¼ lδn0nδl0l, the occupa-
tion of positive momenta hnljP̂posjn0l0i¼δn0nδl0lθðlÞ, the
occupation of the odd axial modes hnljP̂oddjn0l0i ¼
δn0nδl0lδl mod 2;1, and the part of the transverse potential
energy mω2⊥ρ2=2 in the total energy, hnljÛjn0l0i ¼
½ð2n þ 1Þδn0n − ðn þ 1Þδn0nþ1 − nδn0n−1�δl0lℏω⊥=ð2EnlÞ.
The averages and variances of these observable expect-
ation values over the integrable system eigenstates are
directly calculated. The averages are hnljp̂axjnli ¼ l0,

hnljP̂posjnli ¼ 1=2, hnljP̂oddjnli ¼ 1=2, and hnljÛjnli ¼
1=3. Although the average expectation value of the axial
momentum is constant, its variation amplitude increases
with the state energy. Then, the variance VarnlðpaxÞ ¼
mL2ðE5=2

max − E5=2
minÞ=½10π2ℏ2ðE3=2

max − E3=2
minÞ� depends on the

averaging interval ½Emin; Emax� boundaries. The variances
for other observables are independent of the interval:
VarnlðP̂posÞ ¼ 1=4, VarnlðP̂oddÞ ¼ 1=4, and VarnlðÛÞ ¼
1=45. The expectation values over the nonintegrable
system eigenstates are calculated using the expansion
coefficients (7).
Together with Eq. (6), the relation (10) provides the

decay of fluctuation variance on the increase of the number
of scatterers, VarαðÔÞ ¼ VarnðÔÞ=½η−12 þ ðs − 2Þν], or
eigenstate thermalization approaching in a single-body
system. Then, a set of fixed scatterers mimics the behavior

(a)(b)

(c)

FIG. 3. (a) The dependence of the number of principal compo-
nents on the number of scatterers for the nonsymmetric (pluses),
symmetric (crosses), box (circles), and T-invariant (triangles)
models in the unitary regime of strong perturbations. The lines
represent the linear fits. (b) The ratio of variances over eigenstates
of the nonsymmetric model with 32 scatterers to ones of the
integrable system as a function of the inverse participation ratio on
the change of the perturbation strength from the unitary regime to
zero. (c) The same ratio as a function of the number of scatterers in
the unitary regime. In (b) and (c), the symbols represent four
observables, namely, the axial momentum (crosses), the part of the
transverse potential energy in the total energy (pluses), and the
occupations of the positive momenta (triangles) and of the odd
axial modes (circles). The lines show IPR.
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of many-body systems—sets of moving scatterers [65].
However, in many-body systems, the fluctuations decay
exponentially with the number of particles. Then their
chaoticity is extremely sensitive to the number of particles
and the interaction strength. For fixed scatterers, the
fluctuation decay is only inversely proportional to their
number. This opens possibilities of fine control of the
system chaoticity and exploration of the integrability-chaos
crossover.
Chaotic properties of many-body systems of interacting

particles are studied in numerous experimental and theo-
retical research. However, due to computational difficulties,
a direct numerical simulation is performed for lattice systems
(e.g., Refs. [14,17,19,31–33,37,38,40,41,44,47,48]) with a
finite Hilbert space, while the problem complexity increases
as a high power of the lattice site number and exponentially
with the number of particles. A single particle in an external
potential allows us to explore an infinite Hilbert space.
Eigenstate thermalization has been analyzed [66] for 3 × 104

states of a Sinai-type billiard. However, the chaoticity of that
system cannot be tuned, and the calculation of highly excited
states is obstructed by the increase of the coordinate grid
size. The properties of systems with several independent
perturbations (particularly, scatterers) can be tuned by the
number of perturbations and their strengths. Although the
general results are confirmed by numerical calculations for a
specific model, they are applicable to any integrable system,
perturbed by several scatterers.
The predictions should be testable experimentally in

several physical systems. Tightly trapped cold atoms of one
kind can play the role of scatterers for an atom of a second
kind in a wide trap. Moreover, several atoms of the second
kind—with interactions between them turned off by a broad
Feshbach resonance—can be used to get averages. In
optics, photons in a cavity can be scattered by optical
defects [67].

[1] G. Zaslavsky, Chaos in Dynamic Systems (Harwood, New
York, 1985).

[2] T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum
Newton’s cradle, Nature (London) 440, 900 (2006).

[3] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol,
S. Gopalakrishnan, and B. L. Lev, Thermalization near
Integrability in a Dipolar Quantum Newton’s Cradle, Phys.
Rev. X 8, 021030 (2018).

[4] A. Di Carli, C. D. Colquhoun, G. Henderson, S. Flannigan,
G.-L. Oppo, A. J. Daley, S. Kuhr, and E. Haller, Excitation
Modes of Bright Matter-Wave Solitons, Phys. Rev. Lett.
123, 123602 (2019).

[5] D. Luo, Y. Jin, J. H. V. Nguyen, B. A. Malomed, O. V.
Marchukov, V. A. Yurovsky, V. Dunjko, M. Olshanii, and
R. G. Hulet, Creation and Characterization of Matter-Wave
Breathers, Phys. Rev. Lett. 125, 183902 (2020).

[6] I. Mazets, Integrability breakdown in longitudinaly trapped,
one-dimensional bosonic gases, Eur. Phys. J. D 65, 43
(2011).

[7] G. P. Brandino, J.-S. Caux, and R. M. Konik, Glimmers of a
Quantum KAM Theorem: Insights from Quantum
Quenches in One-Dimensional Bose Gases, Phys. Rev. X
5, 041043 (2015).

[8] V. A. Yurovsky, B. A. Malomed, R. G. Hulet, and M.
Olshanii, Dissociation of One-Dimensional Matter-Wave
Breathers due to Quantum Many-Body Effects, Phys. Rev.
Lett. 119, 220401 (2017).

[9] O. V. Marchukov, B. A. Malomed, V. Dunjko, J. Ruhl, M.
Olshanii, R. G. Hulet, and V. A. Yurovsky, Quantum Fluc-
tuations of the Center of Mass and Relative Parameters of
Nonlinear Schrödinger Breathers, Phys. Rev. Lett. 125,
050405 (2020).

[10] N. L. Harshman, M. Olshanii, A. S. Dehkharghani, A. G.
Volosniev, S. G. Jackson, and N. T. Zinner, Integrable
Families of Hard-Core Particles with Unequal Masses in
a One-Dimensional Harmonic Trap, Phys. Rev. X 7, 041001
(2017).

[11] J. M. Deutsch, Quantum statistical mechanics in a closed
system, Phys. Rev. A 43, 2046 (1991).

[12] M. Srednicki, Chaos and quantum thermalization, Phys.
Rev. E 50, 888 (1994).

[13] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
its mechanism for generic isolated quantum systems, Nature
(London) 452, 854 (2008).

[14] A. Khodja, R. Steinigeweg, and J. Gemmer, Relevance of
the eigenstate thermalization hypothesis for thermal relax-
ation, Phys. Rev. E 91, 012120 (2015).

[15] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R.
Schittko, P. M. Preiss, and M. Greiner, Quantum thermal-
ization through entanglement in an isolated many-body
system, Science 353, 794 (2016).

[16] J. M. Deutsch, Eigenstate thermalization hypothesis, Reps.
Prog. Phys. 81, 082001 (2018).

[17] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii,
Relaxation in a Completely Integrable Many-Body Quan-
tum System: An Ab Initio Study of the Dynamics of the
Highly Excited States of 1D Lattice Hard-Core Bosons,
Phys. Rev. Lett. 98, 050405 (2007).

[18] E. V. H. Doggen and J. J. Kinnunen, Quench-induced delo-
calization, New J. Phys. 16, 113051 (2014).

[19] S. Nandy, A. Sen, A. Das, and A. Dhar, Eigenstate Gibbs
ensemble in integrable quantum systems, Phys. Rev. B 94,
245131 (2016).

[20] W. Verstraelen, D. Sels, and M. Wouters, Unitary work
extraction from a generalized Gibbs ensemble using Bragg
scattering, Phys. Rev. A 96, 023605 (2017).

[21] C.-H. Wu, Time evolution and thermodynamics for a
nonequilibrium system in phase-space, Can. J. Phys. 97,
609 (2019).

[22] P. Šeba, Wave Chaos in Singular Quantum Billiard, Phys.
Rev. Lett. 64, 1855 (1990).

[23] T. Cheon and T. Shigehara, Scale anomaly and quantum
chaos in billiards with pointlike scatterers, Phys. Rev. E 54,
3300 (1996).

[24] O. Legrand, F. Mortessagne, and R. L. Weaver, Semiclass-
ical analysis of spectral correlations in regular billiards with
point scatterers, Phys. Rev. E 55, 7741 (1997).

[25] W. G. Brown, L. F. Santos, D. J. Starling, and L. Viola,
Quantum chaos, delocalization, and entanglement in

PHYSICAL REVIEW LETTERS 130, 020404 (2023)

020404-5

https://doi.org/10.1038/nature04693
https://doi.org/10.1103/PhysRevX.8.021030
https://doi.org/10.1103/PhysRevX.8.021030
https://doi.org/10.1103/PhysRevLett.123.123602
https://doi.org/10.1103/PhysRevLett.123.123602
https://doi.org/10.1103/PhysRevLett.125.183902
https://doi.org/10.1140/epjd/e2010-10637-5
https://doi.org/10.1140/epjd/e2010-10637-5
https://doi.org/10.1103/PhysRevX.5.041043
https://doi.org/10.1103/PhysRevX.5.041043
https://doi.org/10.1103/PhysRevLett.119.220401
https://doi.org/10.1103/PhysRevLett.119.220401
https://doi.org/10.1103/PhysRevLett.125.050405
https://doi.org/10.1103/PhysRevLett.125.050405
https://doi.org/10.1103/PhysRevX.7.041001
https://doi.org/10.1103/PhysRevX.7.041001
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevE.91.012120
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1088/1361-6633/aac9f1
https://doi.org/10.1103/PhysRevLett.98.050405
https://doi.org/10.1088/1367-2630/16/11/113051
https://doi.org/10.1103/PhysRevB.94.245131
https://doi.org/10.1103/PhysRevB.94.245131
https://doi.org/10.1103/PhysRevA.96.023605
https://doi.org/10.1139/cjp-2017-0913
https://doi.org/10.1139/cjp-2017-0913
https://doi.org/10.1103/PhysRevLett.64.1855
https://doi.org/10.1103/PhysRevLett.64.1855
https://doi.org/10.1103/PhysRevE.54.3300
https://doi.org/10.1103/PhysRevE.54.3300
https://doi.org/10.1103/PhysRevE.55.7741


disordered Heisenberg models, Phys. Rev. E 77, 021106
(2008).

[26] V. A. Yurovsky and M. Olshanii, Restricted thermalization
for two interacting atoms in a multimode harmonic wave-
guide, Phys. Rev. A 81, 043641 (2010).

[27] C. Stone, Y. A. E. Aoud, V. A. Yurovsky, and M. Olshanii,
Two simple systems with cold atoms: Quantum chaos tests
and non-equilibrium dynamics, New J. Phys. 12, 055022
(2010).

[28] V. A. Yurovsky and M. Olshanii, Memory of the Initial
Conditions in an Incompletely Chaotic Quantum System:
Universal Predictions with Application to Cold Atoms,
Phys. Rev. Lett. 106, 025303 (2011).

[29] M. Kollar, F. A. Wolf, and M. Eckstein, Generalized Gibbs
ensemble prediction of prethermalization plateaus and their
relation to nonthermal steady states in integrable systems,
Phys. Rev. B 84, 054304 (2011).

[30] V. A. Yurovsky, A. Ben-Reuven, and M. Olshanii, Dynam-
ics of relaxation and fluctuations of the equilibrium state in
an incompletely chaotic system, J. Phys. Chem. B 115, 5340
(2011).

[31] M. Olshanii, K. Jacobs, M. Rigol, V. Dunjko, H. Kennard,
and V. A. Yurovsky, An exactly solvable model for the
integrability-chaos transition in rough quantum billiards,
Nat. Commun. 3, 641 (2012).

[32] C. Neuenhahn and F. Marquardt, Thermalization of inter-
acting fermions and delocalization in Fock space, Phys. Rev.
E 85, 060101(R) (2012).

[33] E. Canovi, D. Rossini, R. Fazio, G. E. Santoro, and A. Silva,
Many-body localization and thermalization in the full
probability distribution function of observables, New J.
Phys. 14, 095020 (2012).

[34] J. Larson, B. M. Anderson, and A. Altland, Chaos-driven
dynamics in spin-orbit-coupled atomic gases, Phys. Rev. A
87, 013624 (2013).

[35] L. Campos Venuti, S. Yeshwanth, and S. Haas, Equilibration
times in clean and noisy systems, Phys. Rev. A 87, 032108
(2013).

[36] O. Fialko, Decoherence via coupling to a finite quantum
heat bath, J. Phys. B 47, 045302 (2014).

[37] F. Andraschko, T. Enss, and J. Sirker, Purification and
Many-Body Localization in Cold Atomic Gases, Phys. Rev.
Lett. 113, 217201 (2014).

[38] C. Khripkov, A. Vardi, and D. Cohen, Quantum thermal-
ization: Anomalous slow relaxation due to percolation-like
dynamics, New J. Phys. 17, 023071 (2015).

[39] L. C. Venuti and P. Zanardi, Theory of temporal fluctuations
in isolated quantum systems, Int. J. Mod. Phys. B 29,
1530008 (2015).

[40] C. Khripkov, D. Cohen, and A. Vardi, Thermalization of
bipartite Bose-Hubbard models, J. Phys. Chem. A 120,
3136 (2016).

[41] C. Bartsch and J. Gemmer, Necessity of eigenstate thermal-
isation for equilibration towards unique expectation values
when starting from generic initial states, Europhys. Lett.
118, 10006 (2017).

[42] C. B. Dağ, S.-T. Wang, and L.-M. Duan, Classification of
quench-dynamical behaviors in spinor condensates, Phys.
Rev. A 97, 023603 (2018).

[43] N. Yesha, Uniform distribution of eigenstates on a torus
with two point scatterers, J. Spectr. Theory 8, 1509 (2018).

[44] F. Iglói, B. Blaß, G. m. H. Roósz, and H. Rieger, Quantum
XX model with competing short- and long-range inter-
actions: Phases and phase transitions in and out of equi-
librium, Phys. Rev. B 98, 184415 (2018).

[45] T. Goldfriend and J. Kurchan, Equilibration of quasi-
integrable systems, Phys. Rev. E 99, 022146 (2019).

[46] A. Bastianello, Lack of thermalization for integrability-
breaking impurities, Europhys. Lett. 125, 20001 (2019).

[47] W.-J. Huang, Y.-B. Wu, G.-C. Guo, and X.-B. Zou, Ergodic-
nonergodic transition with cold spinless fermions in a
cavity, Phys. Rev. A 105, 033315 (2022).

[48] J.-L. Ma, Q. Li, and L. Tan, Ergodic and nonergodic phases
in a one-dimensional clean Jaynes-Cummings-Hubbard
system with detuning, Phys. Rev. B 105, 165432 (2022).

[49] P. Sierant and J. Zakrzewski, Challenges to observation
of many-body localization, Phys. Rev. B 105, 224203
(2022).

[50] B. Georgeot and D. L. Shepelyansky, Breit-Wigner Width
and Inverse Participation Ratio in Finite Interacting Fermi
Systems, Phys. Rev. Lett. 79, 4365 (1997).

[51] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.020404, which in-
cludes Refs. [52–55], for derivation details.

[52] DLMF, NIST Digital Library of Mathematical Functions,
http://dlmf.nist.gov/, release 1.1.6 of 2022-06-30, edited by
F.W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V.
Saunders, H. S. Cohl, and M. A. McClain.

[53] J. Avery,Hyperspherical Harmonics: Applications in Quan-
tum Theory (World Scientific, London, 2017).

[54] A. Prudnikov, Y. Brychkov, and O. Marichev, Integrals and
Series, Vol. I: Elementary Functions (Taylor and Francis,
London, 1998).

[55] M. G. Moore, T. Bergeman, and M. Olshanii, Scattering
in tight atom waveguides, J. Phys. IV (France) 116, 69
(2004).

[56] M. V. Berry, Regular and irregular semiclassical wavefunc-
tions, J. Phys. A 10, 2083 (1977).

[57] S. A. van Langen, P. W. Brouwer, and C. W. J. Beenakker,
Fluctuating phase rigidity for a quantum chaotic system
with partially broken time-reversal symmetry, Phys. Rev. E
55, R1 (1997).

[58] E. P. Wigner, Characteristic vectors of bordered matrices
with infinite dimensions, Ann. Math. 62, 548 (1955).

[59] Y. V. Fyodorov and A. D. Mirlin, Statistical properties of
random banded matrices with strongly fluctuating diagonal
elements, Phys. Rev. B 52, R11580 (1995).

[60] K. Frahm and A. Müller-Groeling, Analytical results for
random band matrices with preferential basis, Europhys.
Lett. 32, 385 (1995).

[61] P. Jacquod and D. L. Shepelyansky, Hidden Breit-Wigner
Distribution and Other Properties of Random Matrices with
Preferential Basis, Phys. Rev. Lett. 75, 3501 (1995).

[62] Q. Guan, V. Klinkhamer, R. Klemt, J. H. Becher, A.
Bergschneider, P. M. Preiss, S. Jochim, and D. Blume,
Density Oscillations Induced by Individual Ultracold
Two-Body Collisions, Phys. Rev. Lett. 122, 083401 (2019).

PHYSICAL REVIEW LETTERS 130, 020404 (2023)

020404-6

https://doi.org/10.1103/PhysRevE.77.021106
https://doi.org/10.1103/PhysRevE.77.021106
https://doi.org/10.1103/PhysRevA.81.043641
https://doi.org/10.1088/1367-2630/12/5/055022
https://doi.org/10.1088/1367-2630/12/5/055022
https://doi.org/10.1103/PhysRevLett.106.025303
https://doi.org/10.1103/PhysRevB.84.054304
https://doi.org/10.1021/jp109388x
https://doi.org/10.1021/jp109388x
https://doi.org/10.1038/ncomms1653
https://doi.org/10.1103/PhysRevE.85.060101
https://doi.org/10.1103/PhysRevE.85.060101
https://doi.org/10.1088/1367-2630/14/9/095020
https://doi.org/10.1088/1367-2630/14/9/095020
https://doi.org/10.1103/PhysRevA.87.013624
https://doi.org/10.1103/PhysRevA.87.013624
https://doi.org/10.1103/PhysRevA.87.032108
https://doi.org/10.1103/PhysRevA.87.032108
https://doi.org/10.1088/0953-4075/47/4/045302
https://doi.org/10.1103/PhysRevLett.113.217201
https://doi.org/10.1103/PhysRevLett.113.217201
https://doi.org/10.1088/1367-2630/17/2/023071
https://doi.org/10.1142/S021797921530008X
https://doi.org/10.1142/S021797921530008X
https://doi.org/10.1021/acs.jpca.5b11176
https://doi.org/10.1021/acs.jpca.5b11176
https://doi.org/10.1209/0295-5075/118/10006
https://doi.org/10.1209/0295-5075/118/10006
https://doi.org/10.1103/PhysRevA.97.023603
https://doi.org/10.1103/PhysRevA.97.023603
https://doi.org/10.4171/JST/233
https://doi.org/10.1103/PhysRevB.98.184415
https://doi.org/10.1103/PhysRevE.99.022146
https://doi.org/10.1209/0295-5075/125/20001
https://doi.org/10.1103/PhysRevA.105.033315
https://doi.org/10.1103/PhysRevB.105.165432
https://doi.org/10.1103/PhysRevB.105.224203
https://doi.org/10.1103/PhysRevB.105.224203
https://doi.org/10.1103/PhysRevLett.79.4365
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.020404
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.020404
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.020404
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.020404
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.020404
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.020404
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.020404
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://doi.org/10.1051/jp4:2004116003
https://doi.org/10.1051/jp4:2004116003
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1103/PhysRevE.55.R1
https://doi.org/10.1103/PhysRevE.55.R1
https://doi.org/10.2307/1970079
https://doi.org/10.1103/PhysRevB.52.R11580
https://doi.org/10.1209/0295-5075/32/5/001
https://doi.org/10.1209/0295-5075/32/5/001
https://doi.org/10.1103/PhysRevLett.75.3501
https://doi.org/10.1103/PhysRevLett.122.083401


[63] A. Derevianko, Anisotropic pseudopotential for polarized
dilute quantum gases, Phys. Rev. A 67, 033607 (2003);
Erratum, Phys. Rev. A 72, 039901 (2005).

[64] K. Kanjilal, J. L. Bohn, and D. Blume, Pseudopotential
treatment of two aligned dipoles under external harmonic
confinement, Phys. Rev. A 75, 052705 (2007).

[65] A similar analogy between classical counterparts—2D
problem of fixed scatterers and the hard sphere gas—was
considered in Ref. [1]. But, to my best knowledge, no

quantitative relationship between the number of scatterers
and characteristics of classic chaos is known.

[66] A. H. Barnett, Asymptotic rate of quantum ergodicity in
chaotic Euclidean billiards, Commun. Pure Appl. Math. 59,
1457 (2006).

[67] R. Bruck, C. Liu, O. L. Muskens, A. Fratalocchi, and A. Di
Falco, Ultrafast all-optical order-to-chaos transition in
silicon photonic crystal chips, Laser Photonics Rev. 10,
688 (2016).

PHYSICAL REVIEW LETTERS 130, 020404 (2023)

020404-7

https://doi.org/10.1103/PhysRevA.67.033607
https://doi.org/10.1103/PhysRevA.72.039901
https://doi.org/10.1103/PhysRevA.75.052705
https://doi.org/10.1002/cpa.20150
https://doi.org/10.1002/cpa.20150
https://doi.org/10.1002/lpor.201600086
https://doi.org/10.1002/lpor.201600086

