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Tracer dynamics in the symmetric exclusion process (SEP), where hard-core particles diffuse on an
infinite one-dimensional lattice, is a paradigmatic model of anomalous diffusion. While the equilibrium
situation has received a lot of attention, the case where the tracer is driven by an external force, which
provides a minimal model of nonequilibrium transport in confined crowded environments, remains largely
unexplored. Indeed, the only available analytical results concern the means of both the position of the tracer
and the lattice occupation numbers in its frame of reference and higher-order moments but only in the high-
density limit. Here, we provide a general hydrodynamic framework that allows us to determine the first
cumulants of the bath-tracer correlations and of the tracer’s position in function of the driving force, up to
quadratic order (beyond linear response). This result constitutes the first determination of the bias
dependence of the variance of a driven tracer in the SEP for an arbitrary density. The framework presented
here can be applied, beyond the SEP, to more general configurations of a driven tracer in interaction with

obstacles in one dimension.
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Introduction.—Single-file transport, corresponding to
the diffusion of particles in narrow channels, so that they
cannot bypass each other, is observed in various physical,
chemical, or biological systems, such as zeolites, colloidal
suspensions, or carbon nanotubes [1-4]. In this confined
geometry, a tracer displays an anomalous subdiffusive
behavior, which has been observed by passive microrheol-
ogy [1-3]. The symmetric exclusion process (SEP) is a
paradigmatic model of such single-file diffusion [5,6],
which has been the object of several recent and important
developments [7-10]. In this model, particles perform
symmetric random walks in continuous time on an infinite
one-dimensional lattice, with the constraint that there can
only be one particle per site. Characterizing the anomalous
dynamics of a tracer in this many-body problem has been
the subject of a number of theoretical works [7-9,11-16].
These results are part of a context of intense activity around
exact solutions for one-dimensional interacting particle
systems [10,17-20].

An important extension of tracer diffusion in the SEP
concerns the case where the tracer is submitted to an
external driving force [21] (see Fig. 1). This situation is
encountered for instance in active microrheology, which is
a technique used to probe the properties of living or
colloidal systems by forcing the displacement of a tracer
through the medium [22,23]. More generally, it constitutes
a minimal one-dimensional model for nonequilibrium
transport in confined crowded environments, which has
received growing attention [24,25] (see also Refs. [26-30]

0031-9007/23/130(2)/020402(6)

020402-1

for related models combining tracer driving and bath-
induced crowding). This model allows us to go beyond
the usual Gaussian approximation and characterize the
non-Gaussian fluctuations, as well as the nonlinear effects
of the driving force on the tracer. The only analytical results
at arbitrary density concern the means of both the position
of the tracer and the lattice occupation numbers in its
frame of reference (i.e., the density profiles) [31-33], which
have recently been determined also on finite periodic
systems [34,35]. Since the seminal works [31-33] that
date back almost three decades, the results concerning
higher-order cumulants have been limited to the high-
density limit [12,36] and to specific situations [37,38]. At
arbitrary density, even the determination of the variance of
the position of the tracer, which is crucial to quantify its
fluctuations, remains a fully open problem.

In this Letter, we fill this gap and provide a general
hydrodynamic framework that allows us to determine at
long time bath-tracer density profiles and cumulants of the
tracer position at linear order in the driving force and at
arbitrary density. We also go beyond linear response by

FIG. 1. The SEP with a driven tracer (blue) at position X, (see
the section entitled Model).
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determining the second cumulant of the tracer position and
the corresponding density profile at second order in the
driving force. We thus provide the first nontrivial contri-
bution of the driving force to the variance of the tracer
position at arbitrary density.

Model.—Each site of an infinite 1D lattice is initially
occupied by a particle with probability p. Particles perform
symmetric continuous-time random walks with half unit
jump rate onto each nearest neighbor, and with the hard-
core constraint that there is at most one particle per site.
A tracer, of position X, at time ¢, is initially at the origin,
and is the only particle to experience a driving force, which
results in asymmetric jump rates, namely (1 + s5)/2 to the
right and (1 —5)/2 to the left. The parameter s quantifies
the asymmetry and will be called the bias. The bath
particles are described by the set of occupation numbers
n,(t) of each site r € Z of the lattice at time ¢, with 5,(1) =
1 if the site is occupied and 7,(7) = 0 otherwise.

We first derive the hydrodynamic limit of the problem by
extending to the case of a driven tracer the approach we
developed to study a symmetric tracer in Refs. [8,9]. We
consider the cumulant generating function of the position
of the tracer: w(4,1) = In(e’X') = 3% (1"/n!)k,, where
the x, are the cumulants of the position of the tracer. Its
time evolution is deduced from the master equation given in
the Supplemental Material (SM) [39] and reads

d 1
TSP+ =n-w). (1)
v==+1

where we have denoted w, (1) = (i, ")/ {e**r). We call
w, the generalized density profile generating function,
since by expanding it in powers of A it generates all
correlation functions between the displacement of the tracer
and the density of bath particles at a distance r from the
tracer (represented by the occupation number 7y . ,):
W) = S04 /n) (1, X2),. with (-, the joint
cumulants. For instance, at order 1 in A, (7y.X,), =
(nx,+-X,) = (nx,+,)(X;). Beyond controlling the displace-
ment of the tracer [Eq. (1)] and measuring the response of
the bath of particles, these profiles w, are key quantities in
the SEP since, in the symmetric case s = 0, they satisfy a
strikingly simple closed equation [9].

In the hydrodynamic limit of large time and large
distances, the different observables have the scalings

(=)

where we have omitted the dependency in A of @® for
simplicity. These scalings have been shown to hold in the
symmetric case [7,9,10], and in the biased case [33] at
lowest orders in A for arbitrary density and at all orders in
the high-density limit. Here, based on numerical observa-
tions, we extend Eq. (2) to all orders in 4. From Eq. (1),
these scalings imply the boundary condition:

w0 = V2, w(1) =

=00 =00

ST (L 4us)(e - D1 -00)]=0.  (3)

v==+1

Another key boundary condition is obtained from the time
evolution of wy; deduced from the master equation [39]:

2y
pE]

@'(0%) + -(0%) = 0. 4)

Remarkably, Eq. (4) is closed and does not involve higher-
order correlation functions.

In contrast, the bulk equation satisfied by ®(v) is not
closed. Thus, to compute this profile, we design another
approach [45] based on a fluctuating hydrodynamic
description.

Macroscopic fluctuation theory (MFT) for a driven
tracer.—This approach relies on MFT, which is a powerful
tool to treat the stochastic dynamics of diffusive systems at
large scale [47], and to determine the statistics of observables
in single-file systems such as the current [10,19] or the
position of a symmetric tracer [14,15]. The MFT expresses
the probability of observing a fluctuation of the macroscopic
profile g(x, t), representing the density of particles, in terms
of a diffusion coefficient D(p) and a mobility (p) character-
izing the system at large scales [48]. Below, we mainly focus
on the SEP for which D(p) = 1/2 and 6(p) = p(1 — p), but
the methodology is general. The case of a driven tracer
introduces technical difficulties: (i) the driving force expe-
rienced by the tracer creates a discontinuity in the MFT fields
at the location of the tracer and (ii) the location of this
discontinuity is moving with time.

We circumvent these difficulties by mapping the original
problem onto a dual problem where the position of the
tracer X, is translated into a flux at the origin Q,, therefore
transforming the moving boundary condition into a static
one located at zero [49,50]. A similar approach was used in
Ref. [51] for a different model. The dual system is
described by new MFT fields p and g, where g(k,1)
represents the distance between the particles labeled by the
index k, which becomes a continuous variable at the
hydrodynamic level considered here. These fields obey
the following MFT equations (see SM [39] or Ref. [50] for
derivation):

0,4 = 04[D()0x) — 0x[5(7)9:B). (5a)

- N U SRR
9ip = =D(a)%p = 55 (2)(9:P)*, (5b)
which involve the transport coefficients of the dual system
D(p) = D(1/p)/p* and &(p) = po(1/p). The initial and
final conditions are

B(k,0) = /P W’O)zgg)dz—mk), B(k.1)=—10(k), (6)
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where p=1/p, and O is the Heaviside function.
Equations (5) and (6) are the usual MFT equations,
completed here by matching conditions at the origin
(reminiscent of the position of the tracer in the original
system) which implement the bias [52]:

pO*. 1) = p(0.1), (7)
(1=5)0,p(0*. 1) = (14 5)9p(07, 1), (8)
[~D(7)0xq + ()0, Pl = 0. 9)

The first two equations originate from the optimization of
the MFT action, and the third one comes from the
continuity of the current at the origin. The last matching
condition is a consequence of Eq. (3) (see Ref. [39] for
details):

(1+s)<1—ﬁ>—(l—s)<l—ﬁ>. (10)

Equations (5a)—(10) fully determine the dual MFT fields.
Finally, the generalized density profiles of the original
tracer problem are obtained from these solutions by

0] <v = @> == ! ,
v2/)  alk1)

This completely sets the problem of a driven tracer in the
SEP. However, since there is a priori no explicit solution
for arbitrary density and arbitrary bias, this remains formal
at this stage. We now go further and propose two lines of
investigation of these equations: (i) a numerical resolution
for arbitrary sets of parameters and (ii) a perturbative
expansion, which yields explicit results valid at arbitrary
density for the first coefficients ®,(v) defined by the
expansion of the hydrodynamic limit of the generalized
density profiles: ®(v) = > ((1"/n!)®,(v).

Numerical resolution.—We show in Fig. 2 the profiles at
order 1 and 2 in A obtained by the numerical resolution of
the MFT equations (see SM [39] for details), which are
in perfect agreement with results from microscopic
Monte Carlo simulations (see SM [39]), for a broad range
of parameters. In particular, we consider strong biases, and
densities which are far from the extreme low- and high-
density limits. Note that the approach can be extended to
the paradigmatic case where the initial density of particles
is steplike (p = p, in front of the tracer and p = p_ behind
the tracer) [7,20]. Finally, the plots show that our MFT
procedure captures nontrivial dependencies of the correla-
tion profiles on the rescaled distance.

Linear order in s.—We first note that, for any bias, at
zeroth order in A, we retrieve the exact results previously
obtained for the mean occupation profiles in the frame of
reference of the driven tracer [31,33]. However, for the next

= [(aw.nae. ()

(a)p-=0.5]p. =0.5]s=07 .
0.0 \/—‘—* 0.2

-0.1

(b)p-=05]ps=05]|s=-07
3

Dy(v)
°
s

®1(v)

-0.2 0.0

-0.3

-3 -2 -1 0 1 2 3
v=rp2t

(d)p-=0.6|p.=0.6|5=0.4

-3 -2 -1 0 1 2 3
v=ri2t

(c)p-=0.6|p,=0.4|5=04
0.1 0.0
0.01 Ny traemson] Zoa1

-0.1

®1(v)

-0.2

-0.3

-0.4 -0.4

-3 -2 -1 0 1 2 3
v=rp2t

-3 -2 -1 0 1 2 3
v=r2t

FIG. 2. Profiles @, and @, obtained by the numerical resolution
of the MFT equations (5a) and (5b) (orange dashed lines),
compared to Monte Carlo simulations (blue solid lines), final
time 6000, 107 simulations for (a)—(c) and 9 x 107 for (d), of the
SEP with a driven tracer, for various values of the bias and the
density. (a) @, for p = 0.5 and s = 0.7. (b) ®; for p = 0.5 and
s = —0.7. (c) @, for a step density with p_ = 0.6, p_ = 0.4, and
s = 0.4.(d) ®, forp = 0.6 and s = 0.4. The discrepancy at v = 0
on (d) comes from the numerical errors on @; near the disconti-
nuity at the origin, which are amplified at the second-order @.

orders (®, with n > 1), no explicit analytical solution of
the MFT problem at arbitrary density is available. We then
resort to an expansion in powers of the bias s, and define for
each order n:

®,(v) = @) (v) + 5@, (v) + 2O (0) + -, (12)
where <I>510) corresponds to the known symmetric case [8,9].

At linear order in the bias s, we find [39,53]
(1) 1-p 6 v
@) (v)=— = (2=3perfe(v) = (1-p)_e™ ). (13)
P 7

o) (1) (1-p)[1 —§p<1 —p)]erfc(v)

2p
(1-p)*(4=3p) (1-p)* v)?
+”—p2erfc(v) —Terfc (75)
3
_(22) (f )+ (3/2 2) e

4(1=p)2(1-2 1- 2
_4(1-p)? (2 p) - _( 3/2/7)2 v K, <v_)
zp wlep 2

(14)

where G(x) = (1/7)\/2/7 [® e "/*K((z*/4)dz, and K,
is a modified Bessel function of zeroth order. A key point is
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FIG. 3. Generalized density profiles @} (v) at first order in the
bias s, at density p = 0.6, obtained from the numerical resolution
of the MFT equations (5a) and (5b) (dashed red lines), compared
to the analytical expressions (13) and (14) (solid blue lines). Left:

profile @gl). Right: profile d>(21).

that, contrary to the first order in A, <I><21) is a nonanalytic

function of the rescaled distance v, displaying a logarithmic
singularity at the origin. This appears to be a specificity of
the driven case, since, in the symmetric case, all @, are
analytical functions of the rescaled distance [9]. The

functions dD(l]>(v) and dDS)(v) are plotted in Fig. 3 and
display perfect agreement with the numerical resolution of
the MFT equations. The profile ®;(v) measures the
correlation between the density at a rescaled distance v
from the tracer and the position of the tracer [8]. When
there is no driving force, (Dﬁo)(v > 0) > 0; therefore a
fluctuation of X, toward the right is correlated with an
increase of the density in front of the tracer, indicating an
accumulation of particles in front of the tracer. Here, we

find that the linear correction to these correlations due to

the presence of the drive @gl) (v) is negative, indicating that

a positive driving force reduces these correlations, while a
negative drive increases them.

In addition to fully characterizing the bath-tracer corre-
lations, the generalized density profiles ®,, also lead to the
cumulants of the tracer’s position. This is made possible by
the key relation derived above [Eq. (4)]. We get, for

Ry = lim,_ o [ic, /v/21],

. l—p . l=p
Ri=s + O(s?), Ry = ——=+ O(s?), 15
—Liow). meTliow) 0s)

R = f%pgu —p){(12(1 = p)? — x[(8 — 3v/2)p?

“3(4=V2))p +3)]} + O(s2). (16)

We note that, up to order n = 3, &, = sfcffflo) + O(s?),
which implies that

_ dy(5=0)
W) ~ W0 0n) + 5

o). ()

On top of that, we checked from the high-density solution
obtained in Refs. [12,36] that, when p — 1, Eq. (17) holds

p-=p+=02
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FIG. 4. Left: profile @22)(11) at p = 0.6 [Eq. (18)] (solid blue
lines), compared to the numerical resolution of the MFT equa-
tions (5a) and (5b) (dashed red lines). Right: rescaled cumulant «,
as a function of the bias s, obtained from the numerical resolution
of the MFT equations (5a) and (5b) (solid blue line), compared to
the small bias expansion (19) (solid green line). The points are
obtained from Monte Carlo simulations (15.8 x 10° simulations,
final time 100 000). Note that the correction in s> to &, is always
positive, for all the values of the density p.

at any order in 4, and at arbitrary time. This points toward
the generality of this relation.

Beyond linear response.—We next show that explicit
analytical results can be obtained beyond linear response
which, as we proceed to show, can be quantitatively and
even qualitatively significant. In addition, even if our
previous expressions provide the leading order in the bias
s, they do not bring nontrivial information for even
cumulants, since the first nonzero correction to the
unbiased case is actually of order s? for symmetry reasons.
We thus compute the profile ®; at quadratic order in the
bias and get [39]

of(0) = U= e BN )
P P
(=9 (v _(1=p)
3, erfc(\ﬁ) — o, G(V2v)
+5(1_p)31}e—v2_w{”2
2 np?
_(;7_2?2%_”2/2[(((%)_ (18)

Interestingly, we note that, even at order 1 in A (and not only
at order 2 as in the linear response analysis discussed
above), the density profile is in fact nonanalytic at the
origin. We stress that this qualitatively different feature
emerges beyond linear response.

In addition, the expression of (ID(IZ) yields the s? order of

Ry = Rsl,_o + s2ARSY + O(s3), with
(1=p)*{7 =50 —=[(V2=3)p +2]}

22) _
Aky” = 2120 - (19)

This result constitutes the first determination of the bias
dependence of the variance of a driven tracer in the SEP for
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an arbitrary density, a problem which has remained open
for more than 25 years.

The function <I>§2)(v) is plotted in Fig. 4 and displays
very good agreement with the results obtained from the
numerical procedure described above. We also display the
dependence of the second cumulant as a function of the bias
for a given value of the density p = 0.2, which shows good
agreement with both microscopic Monte Carlo simulations
and the numerical resolution as long as the bias is small
enough. This cumulant displays an important variation with
the bias (~30%), emphasizing the quantitative importance
of studying the problem beyond linear response (which
gives zero variation).

Conclusion.—In this Letter, starting from microscopic
considerations, we built a hydrodynamic framework to
study both the dynamics of a driven tracer in the SEP and
the response of its environment. This allowed us to
determine the first cumulants of bath-tracer correlations
and of the tracer position at linear order in the bias and at
arbitrary density—a regime of parameters that was left
aside so far. We also went beyond linear response by
determining the second cumulant and the corresponding
correlation profile, therefore unveiling for the first time the
dependence of the variance of the tracer’s position on the
bias. Importantly, this approach is general and can be
extended to study other models of single-file transport, by
replacing in Eqgs. (5a)—(9) the transport coefficients D and ¢
by those of the system under consideration, and adapting
the matching condition (10) which can be derived from
microscopic considerations, as done here for the SEP.

We thank Alexis Poncet for numerous discussions at
early stages of this work, both on analytical and numerical
aspects.
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