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We study a class of Galilean-invariant one-dimensional Bethe ansatz solvable models in the
thermodynamic limit. Their rapidity distribution obeys an integral equation with a difference kernel over
a finite interval, which does not admit a closed-form solution. We develop a general formalism enabling one
to study the moments of the rapidity distribution, showing that they satisfy a difference-differential
equation. The derived equation is explicitly analyzed in the case of the Lieb-Liniger model and the
moments are analytically calculated. In addition, we obtained the exact information about the ground-state
energy at weak repulsion. The obtained results directly enter a number of physically relevant quantities.
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Introduction.—Renewed broad interest in quantum inte-
grable systems, beyond the field of mathematical physics,
arises from their experimental realizations with cold
gases [1,2]. One of the main particular features of inte-
grable systems is the existence of an extensive number of
conserved quantities opposite to very few ones in generic
systems. They strongly constrain the time evolution of an
initial state of the system, globally affecting the dynamics
and thermalization [3,4]. A natural key question that
emerged was how to construct the generalized thermo-
dynamic ensemble in order to describe the stationary state
of the system at late times. It is nowadays widely accepted
that the conventional Gibbs ensemble for generic systems is
replaced by a more general one involving the conserved
quantities (so-called charges) [5,6], which has also been
supported experimentally [7].
A Bethe ansatz integrable model is characterized by the

exact wave function. The latter is parametrized by the set of
rapidities that obey the Bethe equations. In the thermo-
dynamic limit, it is appropriate to consider the rapidity
distribution. It has a simple physical meaning in the special
case of δ-interacting bosons in one dimension (i.e., the
Lieb-Liniger model) at infinite repulsion strength. Then the
rapidities coincide with the momenta of a free Fermi gas,
having thus a constant density. Decreasing the repulsion
strength, the set of rapidities evolves according to the Bethe
ansatz equations and the distribution shrinks symmetrically.
At weak interaction, the distribution becomes sharply
peaked around zero momentum, which marks a tendency
of bosons to exhibit a Bose-Einstein condensation.
Interestingly, initially conceived theoretically, the rapi-
dity distribution has been directly measured in a recent
experiment [8].
The rapidity distribution is a central quantity that

determines various physically important quantities in

integrable models. The ground-state energy is proportional
to the second moment of the rapidity distribution. A
number of correlation functions have also been expressed
in terms of the second and higher moments. Well-known
examples include the short-distance expansion of the one-
body density matrix [9,10] as well as the local two- and
three-body correlation functions [11,12]. In fact, the latter
should be true in the more general N-body case. The
exponent of the decay of the one-body density matrix is a
function of the value of the rapidity distribution at the
edge [13]. Remarkably, even the spectrum of elementary
excitations can be obtained from the rapidity distribution of
the system in the ground state [14], which further empha-
sizes its importance. Finally, the moments are proportional
to the expectation values of the conserved charges.
The rapidity distribution is governed by an integral

equation, see Eq. (1) below, with unknown closed-form
solution. This complicates the evaluation of the moments,
which are typically not known analytically, apart from the
ground-state energy in some cases. In this Letter we make a
significant progress in this direction. We develop the
formalism for the analytical evaluation of the moments
of the rapidity distribution in one-dimensional Galilean-
invariant integrable models. We find an exact differential
equation for the moment-generating function, which
reduces to a difference-differential equation for the
moments. The latter is then analyzed on the example of
the Lieb-Liniger model and explicit analytical results are
obtained.
General results.—We consider an integrable many-body

system of nonrelativistic quantum particles with the pair-
wise interactions that depend on the relative coordinate of
particles in the thermodynamic limit. In such Galilean-
invariant systems, the density of rapidities (or rapidity
distribution) obeys the Lieb integral equation [15]
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ρðk;QÞ þ 1

2π

Z
Q

−Q
dqθ0ðk − qÞρðq;QÞ ¼ 1

2π
: ð1Þ

Here, Q is the Fermi rapidity, which denotes the highest
occupied rapidity in the ground state. In Eq. (1), θ0ðkÞ
denotes the derivative of the two-particle scattering phase
shift, which is an even real function. This implies that
the density of rapidities is an even positive function,
ρðk;QÞ ¼ ρð−k;QÞ. Differentiating Eq. (1), after using
the partial integration and the parity of ρðk;QÞ and θ0ðkÞ,
one obtains that the density of rapidities determined by
Eq. (1) also satisfies a partial differential equation [16]

�
∂
2

∂Q2
− 2

d
dQ

½ln ρðQ;QÞ� ∂

∂Q
−

∂
2

∂k2

�
ρðk;QÞ ¼ 0: ð2Þ

Instead of Eq. (1), in the following considerations we will
use Eq. (2) as a starting point.
In order to study the moments of the rapidity distri-

bution, it is useful to consider an integral

fαðQÞ ¼
Z

Q

−Q
dkρðk;QÞ coshðαkÞ; ð3Þ

where α is a real parameter. Equation (3) can be understood
as the moment-generating function, since the moments of
ρðk;QÞ can be obtained by differentiating fαðQÞ with
respect to α and then taking the limit α → 0. The real
usefulness of fαðQÞ arises from the relation

�
∂
2

∂Q2
− 2

d
dQ

½ln ρðQ;QÞ� ∂

∂Q

�
fαðQÞ ¼ α2fαðQÞ; ð4Þ

which can be shown directly by applying the derivatives to
the definition (3) after making use of Eq. (2). Equation (4)
is an exact result that is derived under the minimal
assumption that the scattering phase shift is a repeatedly
differentiable function. It thus applies to all integrable
models where the density of rapidities is determined by
Eq. (1) with smooth θðkÞ. Three well-known examples
are the hyperbolic Calogero-Sutherland [15], the Lieb-
Liniger [17], and the Yang-Gaudin models [18].
Consider the (dimensionless) moments of the rapidity

distribution normalized as

e2l ¼
1

n2lþ1

Z
Q

−Q
dkk2lρðk;QÞ; ð5Þ

where l ≥ 0 is an integer and n is the density of particles,
defined by n ¼ f0ðQÞ. Therefore the lowest moment is
e0 ¼ 1, while the higher ones can be obtained from Eq. (3)
since n2lþ1e2l ¼ ð∂2lfαðQÞ=∂α2lÞjα¼0. Using the relation
dn=dQ ¼ 4πρ2ðQ;QÞ [19] to express the derivative in the
left-hand side of Eq. (4) as 16π2ρ4ðQ;QÞ∂2=∂n2, we obtain

∂
2

∂n2
ðn2lþ1e2lÞ ¼

lð2l − 1Þ
8π2ρ4ðQ;QÞ n

2l−1e2l−2: ð6Þ

Equation (6) is the main result of this Letter. It shows a
remarkable fact that the moments of the rapidity distribu-
tion (5) are not independent, but must satisfy a difference-
differential equation, which is given by Eq. (6). In the
following, we study its consequences in more details.
At l ¼ 0, Eq. (6) is trivial, while at l ¼ 1 it leads to

∂
2

∂n2
ðn3e2Þ ¼

n
8π2ρ4ðQ;QÞ : ð7Þ

Equation (7) is equivalent to the thermodynamic expression
for the velocity of excitations v that is given by v2 ¼
ðL=mnÞð∂2E0=∂L2Þ. Here, L is the system size, m is the
mass of particles, and E0 is the ground-state energy, which
is related to the second moment via the relation
E0 ¼ ℏ2n3Le2=2m. At this point we also need the general
relation mvK ¼ πℏn valid for Galilean invariant models,
where K ¼ 4π2ρ2ðQ;QÞ denotes the Luttinger liquid
parameter [13,15]. For l ≥ 2, Eq. (6) uncovers a new set
of relations between the moments, enabling us to use the
explicit result for one of them to obtain all the others, which
we do next.
Application to the Lieb-Liniger model.—Previous results

do not rely on any specific form of the interaction, but on
minimal requirements on the scattering phase shift. Let us
now analyze Eq. (6) in the case of the Lieb-Liniger model.
It describes bosons of the mass m interacting via a contact
interaction of the strength ℏ2c=m, and the phase shift is
θðkÞ ¼ −2 arctanðk=cÞ. The dimensionless interaction
parameter of the model is γ ¼ c=n [17]. The moments
(5) are dimensionless functions and can be expressed only
in terms of γ. Equation (6) then becomes

d2

dγ2

�
e2lþ2

γ2lþ2

�
¼ ðlþ 1Þð2lþ 1Þ d2

dγ2

�
e2
γ2

�
e2l
γ2l

: ð8Þ

For l ¼ 0, Eq. (8) becomes an identity, while for l > 0 it
enables us to evaluate e2lþ2 using the known analytical
result for e2. This can be achieved analytically in two
regimes.
In the regime of weak interactions, γ ≪ 1, the leading-

order solution of Eq. (1) is ρðk;QÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − k2

p
=2πc [17].

This gives the order of magnitude estimate for the leading-
order term in Eq. (5), e2l ∼ ðQ=nÞ2lþ2=γ. Using e0 ¼ 1, we
find Q ∼ n

ffiffiffi
γ

p
and thus e2lðγÞ ∼ γl. Since the subsequent

terms in the expansion of e2 are multiplied by
ffiffiffi
γ

p
, we

assume

e2l ¼
X∞
j¼0

að2lÞj γlþj=2; ð9Þ

PHYSICAL REVIEW LETTERS 130, 020401 (2023)

020401-2



where the values of the numerical coefficients að2lÞj for l > 1

will be calculated using the known values of að2Þj [21,22].
Substitution of the form (9) intoEq. (8) yields the connection

between the coefficients að2lþ2Þ
k from the left-hand side of

Eq. (8) and the ones from the right-hand side,

ð2lþ 2 − kÞð2lþ 4 − kÞað2lþ2Þ
k

¼ ðlþ 1Þð2lþ 1Þ
Xk
j¼0

ðj − 2Þðj − 4Það2Þj að2lÞk−j: ð10Þ

Equation (10) is trivial for l ¼ 0 since að0Þk−j ¼ δk;j, while for
l > 1 it enables us to evaluate the coefficients in the series (9)
for e2l using the ones of e2. For a fixed k, Eq. (10) can be
explicitly solved since it is equivalent to a first-order linear
difference equation [23]. Rather than doing that, in Table I

we give the analytical values for að2lÞk for 1 ≤ l ≤ 4. A
motivated reader can easily obtain the coefficients for higher
values of l.
In the regime of strong interactions γ ≫ 1, the integral in

the integral operator of Eq. (1) is subdominant and thus
ρðk;QÞ ¼ 1=2π at the leading order. This gives rise to
e2l ∼ 1. Since the subsequent terms in ρðk;QÞ are by a
factor of 1=γ smaller, the resulting series for its moments
should be assumed in the form

e2l ¼
X∞
j¼0

bð2lÞj γ−j: ð11Þ

Substituting Eq. (11) into Eq. (8) we find an equation

bð2lþ2Þ
k ¼ ðlþ 1Þð2lþ 1Þ

ð2lþ 2þ kÞð2lþ 3þ kÞ

×
Xk
j¼0

ð2þ jÞð3þ jÞbð2Þj bð2lÞk−j ð12Þ

that relates the coefficients of Eq. (11). Equation (12) is a
difference equation that has a similar structure as Eq. (10),

and thus it can be solved for l > 1. The first five terms are
given by

bð2lÞ0 ¼ π2l

2lþ 1
; bð2lÞ1 ¼ −

4lπ2l

2lþ 1
; bð2lÞ2 ¼ 4lπ2l;

bð2lÞ3 ¼ −
16lðlþ 1Þπ2l

3

�
1 −

π2

ð2lþ 1Þð2lþ 3Þ
�
;

bð2lÞ4 ¼ 8lðlþ 1Þð2lþ 3Þπ2l
3

�
1 −

4π2

ð2lþ 1Þð2lþ 3Þ
�
: ð13Þ

Here, we have used the known values of bð2Þj entering
e2 [24], which can be recovered from Eq. (13) setting l ¼ 1.
The results given in Table I substituted in Eq. (9) and the
ones of Eq. (13) substituted in Eq. (11) illustrate how the
exact relation (8) for the Lieb-Liniger model can be used to
obtain analytically all the moments of the rapidity distri-
bution in both regimes of weak and strong interaction from
the knowledge of e2 only.
The second-order differential equation (8) contains exact

information about the moments of the rapidity distribution.
Supplemented by proper boundary (initial) conditions,
Eq. (8) defines a boundary (initial) value problem that in
principle can be studied studied numerically in order to
obtain higher moments for intermediate values of γ using
the knowledge of e2ðγÞ. However, one expects that the
analytical approximations (9) at γ ≪ 1 and (11) at γ ≫ 1
taken with sufficient number of terms can well extrapolate
to the regime of intermediate γ. We have confirmed this
assumption for e2ðγÞ [21,22,24] as well as for the case of
e4ðγÞ, see Fig. 1.

TABLE I. Values of the coefficients in the series (9) evaluated

from Eqs. (10) using the known values of að2Þk .

að2lÞk
k ¼ 0 k ¼ 1 k ¼ 2 k ¼ 3

l ¼ 1 1 − 4
3π

1
6
− 1

π2 − 1
2π3

þ 3ζð3Þ
8π3

l ¼ 2 2 − 88
15π 1 − 2

π2 − 4
3π þ 1

π3
þ 21ζð3Þ

4π3

l ¼ 3 5 − 824
35π 5þ 14

3π2 − 44
3π þ 17

π3
þ 165ζð3Þ

4π3

l ¼ 4 14 − 29168
315π

70
3
þ 3452

45π2 − 1648
15π þ 1438

15π3
þ 525ζð3Þ

2π3

FIG. 1. The fourth moment of the rapidity distribution e4ðγÞ as
a function of the interaction strength γ. The dots represent
numerically exact values; the two curves are obtained from the
asymptotic series (9) with 11 terms [25] and the series (11) with
39 terms. The former low-γ series agrees well with the exact
values for γ ≲ 7 (the absolute value of the relative error is 0.01 at
γ ¼ 7, becoming progressively smaller at smaller γ); the latter
high-γ series applies for γ ≳ 7 (the absolute value of the relative
error is 0.002 at γ ¼ 7, becoming progressively smaller at larger
γ). The inset shows analogous plot for the second moment e2ðγÞ
that was used as an input in Eq. (8) in order to evaluate e4ðγÞ.
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The structure of the series for e2.—To further show the
usefulness of Eq. (8) [and more generally of Eq. (6)], we
can obtain the information about the series for e2 of the
Lieb-Liniger model in the rather complicated case γ ≪ 1,
since Eq. (1) then approaches the singular limit [17,26].
This can be achieved from Eq. (10), which acquires a
special form in the cases k ¼ 2lþ 2 and k ¼ 2lþ 4, since
its left-hand side nullifies. The right-hand side in the former
case becomes a constraint on the coefficients for the series
of e2 and e2l,

X2lþ2

j¼0

ðj − 2Þðj − 4Það2Þj að2lÞ2lþ2−j ¼ 0: ð14Þ

For l ¼ 1, Eq. (14) reduces to

a4 þ
a1a3
4a0

¼ 0: ð15Þ

Here, and in the following we introduced the simplified
notation by suppressing the superscript from the coeffi-

cients entering e2, i.e., we use aj ≡ að2Þj . In the case
k ¼ 2lþ 4, Eq. (10) gives another constraint,

X2lþ4

j¼0

ðj − 2Þðj − 4Það2Þj að2lÞ2lþ4−j ¼ 0: ð16Þ

Taking l ¼ 1, we obtain the second relation among the
coefficients in e2,

a6 þ
3a1a5
8a0

−
ða3Þ2
16a0

¼ 0: ð17Þ

The constraints (14) and (16) at l > 1 in combination with
Eq. (10) lead to infinitely many relations among the
coefficients entering the series for e2. Let us illustrate
how to obtain the third one. Substituting l ¼ 2 in Eq. (16)

we obtain a sum that involves the coefficients að4Þj with
j ¼ 0, 1, 2, 3, 5, 7, 8. Using Eq. (10) we express them in
terms of the sum of products of the two aj coefficients. The

obtained sum of products of three aj’s contains a
ð2Þ
2 arising

from the right-hand side of Eq. (10). However, its overall
prefactor is proportional to the left-hand side of Eq. (17)
and thus nullifies. The remaining terms lead to [16]

a8 þ
13a1a7
10a0

þ 7ða1Þ2a6
20a20

þ a3a5
2a0

þ a1a3a4
20ða0Þ2

¼ 0: ð18Þ

Equations (15), (17), and (18) are the first three relations
among the coefficients of the series for e2 obtained from the
general considerations based on analytic properties of the
integral equation (1) and its consequence given by Eq. (8).
They are in agreement with the exact numerical values for
aj’s [21,22]. The obtained sequence of relations can be
arbitrarily extended by substituting subsequently the values
l ≥ 3 in Eq. (16), followed by the repetitive use of Eqs. (10)
and (14). The obtained relations and the subsequent ones

among aj’s have several special features. First, the term a2
does not occur in them. Second, when multiplied by a
common denominator, the summands of a particular
relation have a product form aj1aj2…, with a constant
sum j1 þ j2 þ � � �. In the relations (15), (17), and (18), this
sum is, respectively, equal to 4, 6, and 8. The second feature
follows directly from Eq. (10). The third feature is the
possibility to express the coefficients with an even index
a2j in terms of the coefficients with odd indices
a1; a3;…; a2j−1 and a0 (which can be shown to be
a0 ¼ 1 [17]). This is obvious for Eqs. (15) and (17).
The special features for the case of Eq. (18) are exemplified
in Supplemental Material [16]. Along the same lines, one
can obtain further relations corresponding to l ≥ 3.
Therefore, we have reduced the complicated problem of
the series solution for e2 to the problem of finding the
coefficients of the series with odd indices.
Discussion.—The moments of the rapidity distribution

represent the conserved charges of Galilean-invariant
integrable models in the thermodynamic limit. In this
Letter, we have derived the relation (6) that connects the
ground-state expectation values of the consecutive con-
served charges (5). We note that the corresponding com-
muting operators that have the eigenvalues (5) are generally
unknown, apart from the first few ones in the case of the
Lieb-Liniger model [27].
The formalism developed in this Letter expressed

through Eqs. (1)–(6) does not apply to Galilean-invariant
models with attractive interactions in cases where Eq. (1)
cannot be used as a starting point. One example is the Lieb-
Liniger model with attraction. It does not have well defined
thermodynamic limit because the ground-state energy
scales with the third power of number of particles, in
contrast to the repulsive case where this scaling is
linear [28]. We note, however, that there are models with
attraction where our formalism will apply. An example is
the Yang-Gaudin model of spin-1

2
fermions with attractive

δ-function interaction, which is described by conceptually
similar equations as the Lieb-Liniger model with repulsion.
The main difference arises at weak attraction where the
series for the ground-state energy is with respect to the
interaction parameter, which should be contrasted to Eq. (9)
where the series is controlled by the square root of the
interaction parameter. On the other hand, the coefficients in
the series of the ground-state energy of the fermionic model
at weak interaction also satisfy a number of relations, akin to
Eqs. (15), (17), and (18) in the Lieb-Liniger case. Note that
we have not specifically addressed the hyperbolic Calogero-
Sutherlandmodel, sincewe are not aware of works where its
ground-state energy is evaluated analytically. This compli-
cated task is beyond the scope of this Letter.
Additional interesting question is whether and how the

results of this Letter can be extended to account for the
thermal states and moreover for more general excited
states, which appear, e.g., in studies of local correlation
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functions [29,30]. In the case of thermal states, the Fermi
step function over the rapidities in Eq. (1) becomes a
smooth Fermi function of the pseudoenergy extending the
integration over the real axis, while the pseudoenergy itself
satisfies a nonlinear Yang-Yang integral equation [31]. The
problem how to treat such equation using the method of
differentiation is left for future work.
To summarize, we have shown that the moments of the

rapidity distribution, equivalently the ground-state expect-
ation values of conserved charges, in Galilean-invariant
integrable models satisfy the difference-differential equa-
tion (6). The latter implies an easy access to all higher
moments once the ground-state energy, i.e., the second
moment of the system is known. Knowledge of such exact
results in the thermodynamic limit is generally advanta-
geous as it can save the computation time of numerical
simulations of quantum many-body systems, which only
treat a limited number of particles.

The author is grateful to G.-L. Oppo for helpful
comments.
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