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One of the grand challenges in cellular biophysics is understanding the precision with which cells
assemble and maintain subcellular structures. Organelle sizes, for example, must be flexible enough to
allow cells to grow or shrink them as environments demand yet be maintained within homeostatic limits.
Despite identification of molecular factors that regulate organelle sizes we lack insight into the quantitative
principles underlying organelle size control. Here we show experimentally that cells can robustly control
average fluctuations in organelle size. By demonstrating that organelle sizes obey a universal scaling
relationship we predict theoretically, our framework suggests that organelles grow in random bursts from a
limiting pool of building blocks. Burstlike growth provides a general biophysical mechanism by which
cells can maintain on average reliable yet plastic organelle sizes.
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Among the most critical scales of biological organization
in the eukaryotic cell is its compartmentalization into
organelles. Organelle biogenesis, among the most complex
tasks the eukaryotic cell performs, is the result of the
coordinated synthesis of tens to hundreds of protein and
lipid macromolecular species, each of which is potentially
subject to stochastic fluctuations intrinsic to their produc-
tion. Generally speaking, how these molecular-scale fluc-
tuations propagate to micron-scale cellular geometric
properties remains an outstanding question in quantitative
cell biology and biophysics [1–4]. We have previously
shown that organelle copy number statistics exhibit sub-
stantial cell-to-cell variability [5], though the root mech-
anisms of this variability remain the subject of much debate
[6,7]. Here we turn our attention to the ability of the
eukaryotic cell to control a closely linked biophysical
property that determines organelle function: organelle size.
Pioneering work on a wide variety of organelles has

focused on characterizing average organelle sizes and has
begun to unravel the molecular mechanisms underpinning
this size control [8]. The importance of controlling organ-
elle size is further suggested by the many scaling relation-
ships that have shown both fixed relative sizes of various
organelles compared to their host cells in a variety of
organisms and developmental contexts [9], including for
the nucleus [10,11] and vacuole [12], and nontrivial
relationships such as maximal mitochondrial activity in
intermediate sized cells [13]. Uncoordinated regulation of
organelle size can lead to severe phenotypic defects, such
as impaired Chlamydomonas reinhardtii motility in unco-
ordinated flagellar length control [14], inappropriately
sized secretory vesicles due to variability in Golgi size
[15], and impaired metabolism due to defects in mitochon-
drial [16] and peroxisomal fission [17] among others. What

remains underexplored is development of a quantitative
understanding of the precision with which organelle size
variability is controlled, particularly for organelles that
exist in multiple copies per cell.
Drawing on a combination of the theory of stochastic

processes and quantitative fluorescence imaging, we directly
examine two questions: how precisely does the cell control
the sizes of its organelles and what, if any, overarching
quantitative principles collectively describe the patterns of
observed organelle sizes despite the vastly different molecu-
lar mechanisms that implement size control?
In order to decipher the quantitative principles governing

organelle size control, we reasoned that we could use a
mathematical model of organelle biogenesis to interpret
endogenous stochastic fluctuations in organelle size. Our
first task in building a mathematical framework to quantify
organelle size control was to be able to distinguish between
the three general limits organelle growth is thought to fall
into [8]. In the first limit, termed constant growth, organelle
growth occurs at a constant rate. In the second limit, termed
negative feedback control, the cell constrains organelle
growth rates to drive them toward a target size. In the third
limit, termed the limiting pool, we assume that organelle
sizes are constrained by a limiting pool of building blocks
from which they are assembled. In each limit, organelle size
is affected by both size-specific processes, such as growth
and disassembly, as well as number changing processes
such as fission and fusion [18,19]. We therefore derived a
stochastic model of organelle biogenesis that tracks the
joint probability distribution of organelle numbers and sizes
in single simulated cells. In this model organelles can be
created de novo, decay, undergo fission and fusion, grow in
size, and shrink. Using the Gillespie algorithm [20] we
solve our model for the three general limits that organelle
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growth can take. The simulation is performed by tracking
the number and sizes of organelles in a single cell until they
reach steady state.
Inspired by physiologically relevant cases, we focused

the simulations on three different regimes of number
changing dynamics: in the late Golgi [21,22] and lipid
droplet [23–25] relevant case in which number dynamics
are governed by de novo synthesis and first order decay
[Fig. 1(a)]; in the peroxisome relevant limit of when
organelle numbers change through de novo synthesis, first
order decay, and fission (see Refs. [26–29] and Fig. S1A
in Supplemental Material [30]); and lastly in the
mitochondria relevant limit of when the abundance of
organelles changes solely through fission and fusion (see
Refs. [31–33] and Fig. S1B [30]). For each number
changing regime we see that the correlation between
fluctuations in organelle number and average organelle
size is diagnostic for whether organelles grow at a constant
rate or are constrained by either negative feedback or a
limiting pool of building blocks. Most importantly, in the
limiting pool limit we observe a negative correlation
between organelle number and average organelle size
[Fig. 1(b)]. This contrasts with the constant growth and
negative feedback regimes, in which average organelle size
is constant in simulated cells with different organelle
numbers when organelles are made de novo [Fig. 1(b)].
The model thus leaves us well positioned to use exper-
imental data to infer which growth limit describes a given
organelle.

To experimentally measure joint organelle number ver-
sus size distributions so as to infer organelle growth rules
with our model, we analyzed the endogenous stochastic
fluctuations in organelle numbers and sizes in the budding
yeast Saccharomyces cerevisiae. To visualize the various
organelles we examine, we fuse the fluorescent protein
monomeric Kusibara Orange2 (mKO2) to organelle mem-
brane resident proteins (Fig. S2 [30]). We use a Bayesian
image analysis framework [34] (Fig. S3 [30]) to analyze the
micrographs and obtain joint single cell average organelle
size versus organelle number probability distributions of
fluorescently labeled late Golgi (labeled with Sec7-mKO2;
Fig. S4 [30]), lipid droplets (Erg6-mKO2; Fig. S5 [30]),
peroxisomes (Pex3-mKO2; Fig. S6 [30]), and mitochondria
(Tom70-mKO2; Fig. S7 [30]). From these joint distributions
we plot the average organelle size as a function of organelle
number. For each of the organelles we examine, we observe a
significant negative correlation between organelle number
and average organelle size [Figs. 1(c)–1(f)]. This negative
correlation between number and size persists for perox-
isomes even when peroxisome fission is inhibited
(Figs. S8A-S8C [30]). Our measurements suggest that the
sizes of the four organelles under study are all constrained by
a limiting pool of building blocks.
Among the most attractive hypotheses arguing for the

utility of the limiting pool model of organelle growth is
that it achieves a stable organelle size in the absence of
feedback. However, it has been shown theoretically that
growing multiple organelles from a limiting pool of
building blocks can lead to remarkably severe size
fluctuations between organelles within the same cell
[35,36], potentially impairing cellular-scale physiological
function. To quantify how intracellular fluctuations in
organelle size behave in our model, we plot the average
intracellular coefficient of variation (CV) in organelle size
as a function of organelle size in cells with equal numbers
of organelles [Figs. 1(g)–1(j), insets]. We focus on cells
simulated in the limiting pool limit of the model. As
expected for a Poisson-type process, we observe that
for decreasing organelle size (which corresponds to
increasing organelle number) the intracellular organelle
size CV increases. This suggests that cells face a funda-
mental trade-off in their ability to achieve organelle size
homeostasis.
We then use our experimental joint distributions of

organelle number and size for the late Golgi, lipid droplets,
mitochondria, and peroxisomes to directly measure the CV
of organelle sizes within single cells [Figs. 1(g)–1(j) herein
and Figs. S9 and S10 in Ref. [30] ]. Contrary to our
theoretical expectation [Figs. 1(g)–1(j), insets], we see that
the average intracellular CVof the late Golgi, lipid droplets,
and peroxisomes remain constant with varying average
organelle size. We reproduced these average intracellular
CV profiles using multiple imaging modalities, including
superresolution radial fluctuation imaging (see Ref. [37]

FIG. 1. (a) Schematic of biophysical processes in model of
organelle biogenesis. (b) Gillespie simulation results of organelle
size versus number for 3 classes of organelle size models. (c)–(f)
Average organelle size versus organelle number. (g)–(j) Average
intracellular CV versus organelle size. Organelle sizes are
normalized to largest organelle size of a given type. Gray data
points indicate errors in CV propagated from estimated errors in
organelle size and gray region is the average value of the gray CV
error data points. Star indicates measured CV of diffraction
limited 100 nm beads.
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and Fig. S9 [30]), and with multiple organelle markers,
including alternative fluorescently labeled organelle-resident
proteins and dyes that localize to specific organelle mem-
branes (Fig. S10 [30]). Thus we conclude that, despite
organelles changing in size by twofold, cells are able to
robustly maintain proportionality in the fluctuations in sizes
to within a factor of 0.5 (peroxisomes) to 0.6 (late Golgi and
lipid droplets) of the mean organelle size, thereby avoiding a
rise in intracellular fluctuationswhen themean organelle size
shrinks. Only the average intracellular CV of mitochondria
appears to increasewhen the cell createsmore, smaller copies
of this organelle.
To address the discrepancy between the noise profile

resulting from our model versus the noise profile of
organelles observed experimentally, we consider a funda-
mental revision to how organelle growth proceeds in our
mathematical framework. Following ruling out a wide
variety of alternative growth models with deterministic
growth steps (Fig. S11 [30]), we sought models that would
allow for independent regulation of growth timing and
growth magnitudes that would allow fluctuations to not
depend strictly on mean organelle size. Building on
previous observations that subcellular structures can grow
from bursts of random sizes of building blocks [38], we
constructed a model in which organelles grow from a
limiting pool of building blocks in exponentially distrib-
uted bursts of random size characterized by an average size
β that occur at random times characterized by a burst
frequency α [Fig. 2(a)], similar to previous models of
transcriptional bursting [39]. In the model, to implement
the limiting pool constraint we make the average burst size
β proportional to the free pool of building blocks available
for organelle growth.

We then proceeded to solve this model for the steady
state organelle size distribution. If the limiting pool of
building blocks is not exhausted and allows organelle sizes
to fluctuate independently of each other, and if copy
number changes are slow compared to size changes
[40–45], then the resulting steady state organelle size
distribution from cells that contain a defined number of
organelles can be solved analytically and follows a γ
distribution [30]. Each steady state γ distribution corre-
sponding to a subpopulation of cells with defined organelle
number has a mean size αβ [Fig. 2(b) herein and Fig. S12 in
Ref. [30] ]. Crucially, however, one can show that for γ
distributions the CV ¼ 1=

ffiffiffi

α
p

. This allows the cell to
decouple the average fluctuations in intracellular organelle
size from the mean organelle size as we observe exper-
imentally in the cases of the Golgi apparatus, lipid droplets,
and peroxisomes but not the mitochondria, allowing robust
tuning of organelle sizes if they are modulated by changes in
β but not α. Moreover, because we measure the CV, and thus
α, and the mean organelle size, and thus αβ, both model
parameters can be inferred solely through measurements
without any model fitting required. We note that while
the separation of timescales renders the model solvable
analytically, themain results, inwhich organelle intracellular
CVs are invariant to average organelle size and organelle
sizes are γ distributed, allow for number changing processes
(Fig. S12 [30]).
The model predicts that we should observe two types of

data collapse upon rescaling organelle sizes (Figs. S13A–
S13G [30]) in the cases of the Golgi apparatus, lipid
droplets, and peroxisomes. First, since the model holds that
organelle sizes change only through modulation of burst
sizes, rescaling organelle sizes by their corresponding burst
sizes should collapse them onto unifying γ distributions
specific to each organelle. Second, by further rescaling
these organelle-specific size distributions by their organ-
elle-specific burst frequencies, our whole collection of late
Golgi, lipid droplet, and peroxisome sizes should collapse
onto the universal curve fðS̃Þ ¼ ðe−S̃=S̃Þ, where S̃ is the
dimensionless rescaled organelle size [30].
To test our prediction that modulation of burst size alone

can explain changes in organelle sizes, we first use our
experimental data to obtain burst size values for each late
Golgi, peroxisome, and lipid droplet size distribution. We
then rescale late Golgi, peroxisome, and lipid droplet sizes
by their experimentally inferred burst sizes and plot the
resulting rescaled size distribution. We see that late Golgi,
lipid droplet, and peroxisome sizes collapse onto single γ
distributions [Figs. 2(c)–2(e)]. Further rescaling the organ-
elle-specific rescaled size histograms by their experimen-
tally calculated burst frequencies, we see that despite the
starkly different molecular mechanisms by which their
sizes are controlled, late Golgi, lipid droplet, and perox-
isome size distributions further collapse onto the single
theoretically predicted universal curve fðS̃Þ ¼ ðe−S̃=S̃Þ

FIG. 2. (a) Schematic of burstlike model of organelle growth.
(b) Distributions of experimentally measured late Golgi, lipid
droplet, and peroxisome sizes. Size of 500 voxels corresponds to
0.4 μm3. (c) Histograms of late Golgi, (d) lipid droplet, and
(e) peroxisome sizes rescaled by their experimentally derived
organelle-specific burst sizes. (f) Histogram of organelle size
distributions rescaled by both experimentally derived organelle-
specific burst sizes and burst frequencies; black curve is the
theoretically predicted scaling relationship from the model.
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[Fig. 2(f)]. This fitting parameter-free data collapse strongly
suggests that our mathematical model of organelle bio-
genesis has captured an essential, unifying feature of
endomembrane organelle growth regulation.
According to our model, sufficient capacity in the

limiting pool of building blocks allows organelles to grow
and fluctuate in size independently of each other and allows
for robust intracellular size control [Fig. 2(a)]. Our model
also predicts, however, that if the available amount of
building blocks for growth depletes enough [Fig. 3(a)] then
intracellular organelle size fluctuations will become anti-
correlated. Anticorrelated fluctuations, in turn, will lead to
a rise in the average intracellular CV as shown in our
simulation results [Fig. 3(b)].
To test our prediction that organelle growth from a

limiting pool with little spare capacity leads to an elevated
intracellular CV, we examine the case of mitochondria,
whose sizes are a balance between biomass conserving
fission and fusion. We plot total organelle volume versus
organelle number formitochondria and observe a linewhose
slope is much smaller than the slope of the line connecting
the origin to the average organelle sizewhenonly 1 organelle
is present (Fig. S14A [30]), consistentwith the idea that cells
largely rearrange existing fixed pool of mitochondrial
biomass when changing mitochondrial number through
fission and fusion. The resulting organelle size distributions
are consistent with our model (Figs. S14D–S14N [30]) and
with our observation of an increasing intracellular CV with
decreasing mitochondria size [Fig. 1(j)].
Next, we test our prediction that depletion of the available

supply of building blocks increased average intracellular
Golgi CV. To test this idea, we analyze the late Golgi in cells

lacking the vesicular traffic regulator ARF1 [40]. We reason
that inhibiting retrograde intra-Golgi vesicular traffic medi-
ated by the coat protein complex COPI through deleting
ARF1 should result in an increased burst size at a reduced
burst frequency [40,42,46]. At a given mean Golgi size,
therefore, we expect that the reduced burst frequency will
increase the CV. Deletion of ARF1 results in a statistically
significant reduction in slope between total Golgi volume
and Golgi number, especially at high Golgi number,
indicating pool depletion [Fig. 3(c) herein and Fig. S15
inRef. [30] ].We observe, in agreementwith our hypothesis,
that upon deletion of ARF1 the average intracellular Golgi
size CV increases as the average Golgi size decreases
[Figs. 3(c) and 3(d)].
Finally, to test our prediction that pool depletion leads

to an elevated intracellular organelle size CV, we turn to
lipid droplets. Lipid droplets are dynamic organelles
whose sizes and copy numbers increase upon cellular
exposure to long chain fatty acid-rich environments
[24,25], and unlike peroxisomes are not thought to
undergo fission events that would make our results
difficult to interpret. We hypothesized that culturing cells
in an oleic acid-rich environment could expose capacity
constraints in lipid droplet biogenesis given our previous
observation that these organelles appear to grow from a
limiting pool of building blocks. To facilitate image
analysis, we imaged lipid droplets with spinning disk
confocal microscopy, using strains bearing lipid droplets
fluorescently labeled with Erg6 fused to monomeric red
fluorescent protein (Erg6-mRFP). We observe that when
grown in glucose, lipid droplets do not expose capacity
constraints in the limiting pool of building blocks. When
grown in medium rich in oleic acid, total organelle
volume increases and shows signatures of pool depletion
[Fig. 3(e) herein and Fig. S15 in Ref. [30] ], namely, a
decrease in the rate of total organelle volume growth with
respect to organelle number compared to cells grown in
glucose. Concomitantly, we observe that the lipid droplet
and peroxisome average intracellular organelle size CV
increases with decreasing mean organelle size [Fig. 3(f)].
To establish the evolutionary conservation of our

observed pattern of robustness in organelle size, we
leveraged single cell imaging data from human induced
pluripotent stem cells (iPSC) whose Golgi apparatus and
mitochondria are labeled available from the Allen Cell
Atlas [47]. With single cell organelle size distributions
from populations of iPSCs, we are able to construct
datasets of both average organelle size versus organelle
number and the average intracellular organelle size CVas
we have done for budding yeast. Both the Golgi apparatus
and mitochondria yield negative sloping average organ-
elle size versus organelle number curves consistent with a
limiting pool model constraining their growth [Figs. 4(a)
and 4(c)]. Most significantly, we observe that the
average intracellular organelle size CV exhibits the

FIG. 3. (a) Total organelle size V as a function of the number of
organelles in the limits where the pool is exhausted (blue line)
versus nonexhausted (maroon line). (b) Average intracellular CV
of organelle sizes versus average organelle sizes in 500 simulated
cells from the burstlike model, when pool is exhausted versus
nonexhausted. Total organelle size (c) and (d) average intra-
cellular size CV of late Golgi from populations of wild-type
(maroon) and ΔARF1 (purple) cells. (e) Total organelle size and
(f) average intracellular size CV of lipid droplets marked with
Erg6-mRFP from populations of wild-type cells grown in glucose
(maroon) and in medium with 0.2 percent oleic acid (blue).
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same pattern in human iPSCs as seen for budding yeast: a
robust, invariant organelle size CV as a function of
average organelle size for the Golgi [Fig. 4(b)] and a
sensitive, inverse correlation between organelle size
CV and average organelle size for the mitochondria
[Fig. 4(d)].
In order to explain our observed invariance of average

organelle size fluctuations to changing mean organelle size,
we propose a model in which organelle growth proceeds in
a burstlike fashion from a limiting pool of building blocks.
The pattern of organelle size robustness is shared between
budding yeast and human iPS cells. The underlying
molecular mechanisms producing these bursts are yet to
be fully elucidated and are likely to be organelle specific
and potentially species specific: Golgi size, for example, is
likely influenced by both small increases in size from
nonvesicular traffic as well as the sudden, large increases in
size from vesicle fusion as we have shown here, while lipid
droplet size bursts may result from burstlike expression of
genes such as those encoding neutral lipid synthesis
enzymes. However, the size statistics of a diverse array
of organelles appear to be well described by a single
unifying model that can be used to interpret future studies
on the mechanistic underpinnings of organelle size control
and a basis for more sophisticated modeling efforts to more
accurately capture details suppressed here [6,7,48,49] as
well as comparison to universal growth phenomena in
seemingly unrelated biological systems [50]. More gen-
erally, burstlike synthesis and activity are ubiquitously
observed in biophysical systems, from gene expression
to the dynamics of neurons, and our observations here on
the ability of burstlike processes to allow living systems to

independently tune signal and noise may be leveraged
much more broadly across diverse biological contexts.
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