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The mass transport properties along dislocation cores in hcp 4He are revisited by considering two types
of edge dislocations as well as a screw dislocation, using a fully correlated quantum simulation approach.
Specifically, we employ the zero-temperature path-integral ground state (PIGS) method together with
ergodic sampling of the permutation space to investigate the fundamental dislocation core structures and
their off-diagonal long-range order properties. It is found that the Bose-Einstein condensate fraction of such
defective 4He systems is practically null (≤ 10−6), just as in the bulk defect-free crystal. These results
provide compelling evidence for the absence of intrinsic superfluidity in dislocation cores in hcp 4He and
challenge the superfluid dislocation-network interpretation of the mass-flux-experiment observations,
calling for further experimental investigation.
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Although torsional oscillator experiments on hcp 4He by
Kim and Chan in 2004 [1,2] initially pointed at the
existence of superfluidity in a solid-phase system, also
known as supersolidity [3,4], posterior examination unam-
biguously established that, instead, the observed pheno-
menology was a consequence of its anomalous mechanical
behavior. Specifically, it was found to be caused by
the obstructing influence of 3He impurities on the low-
temperature mobility of lattice dislocations [5–10], the one-
dimensional defects whose motion induces plastic defor-
mation in crystalline solids [11,12].
Still, the possibility of intrinsic supersolidity in hcp 4He

has not been discarded, in particular due to a variety of
mass flux experiments that report the flow of matter across
solid 4He samples [13–22]. However, the interpretation of
these observations remains controversial. On the one hand,
it has been proposed that the matter flow is transmitted
through a superfluid network of interconnected, one-
dimensional dislocation cores [20–22]. This view relies
fundamentally on the results of computational grand-
canonical finite-temperature path-integral Monte Carlo
(PIMC) studies of one group [23–25], which conclude
that the cores of dislocations with the Burgers vectors along
the c axis, b ¼ ½0001�, are superfluid at ultralow temper-
atures of ∼0.1 K. In contrast, other authors argue that the
mass flow is not dislocation based but, rather, involves

interfacial disorder effects within the samples, including at
vessel walls and grain boundaries [18,19]. This account is
supported by the fact that large amounts of 3He impurities,
much larger than required to saturate typical dislocation
networks and their intersections, are required to block the
flow at low temperatures [19]. In either case, dislocations
play a central role in this controversy and, in view of the
scarce computational evidence, further theoretical scrutiny
of their properties is pressingly needed.
In this Letter we do so, revisiting the basic properties of

dislocations in hcp 4He using first-principles quantum
simulations. However, the employed computational
approach differs significantly from that applied in
Refs. [23–25]. First, instead of finite-temperature PIMC
calculations, we resort to the zero-temperature path-integral
ground state (PIGS) approach, a generalization of the
PIMC method to zero temperature [26–28], that has shown
to converge to exact ground-state results regardless of the
initially chosen wave function for condensed phases of
4He [27,29]. Like in Refs. [23–25], permutation sampling is
carried out using the worm algorithm [30,31] to guarantee
ergodicity in permutation space [28]. Second, we adopt
different boundary conditions for the computational cells
[32]. The results of the previous PIMC calculations [23,24]
are based on tubelike setups, in which only atoms within a
cylindrical (or pencil-shaped in the case of Ref. [23]) region
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are treated explicitly while fixing a set of atoms outside of it
to their classical positions, applying periodic boundary
conditions (PBCs) only along the dislocation line. Such
an arrangement can give rise to lateral incompatibility
stresses [33–37] that may result in incorrect dislocation
core structures if these are not adequately relieved, e.g., by
using Green’s function boundary conditions [36,37]. Here,
we employ different configurations, including a disloca-
tion-dipole arrangement employing fully three-dimensional
PBCs [32,38], as well as slab configurations containing a
single dislocation subject to two-dimensional PBCs [39].
Finally, we focus on the fundamental atomic lattice
structure of the dislocation cores, without considering
processes that require the addition or removal of material
through a grand-canonical (GC) approach as used in
Refs. [23–25]. Indeed, if one does not adequately thermal-
ize, changing particle numbers may introduce artificial
disorder, possibly leading to spurious the appearance of
long-winding permutation cycles [23]. By applying this
computational scheme to edge dislocations with their
Burgers vectors both perpendicular and parallel to the c
axis and to the screw dislocation with its Burgers vector
along the c axis, we find that, at zero temperature, the off-
diagonal long-range order (ODLRO) is practically null
(≤ 10−6), just as in the defect-free hcp crystal. This result
contrasts with previous claims [23–25] and signals the
absence of quantum mass transport through dislocation
cores in hcp 4He, instead lending support to the inter-
pretation that the mass-flow observations are due to
interfacial disorder effects rather than dislocation-mediated
superfluidity.
The integral Schrödinger equation for a system of N

interacting particles can be expressed in imaginary time as

ΨðR; τÞ ¼
Z

dR0GðR;R0; τÞΨðR0; 0Þ; ð1Þ

where GðR;R0; τÞ≡ hRje−HτjR0i is the corresponding
Green’s function, with H the system Hamiltonian,
ΨðR; τÞ the system wave function at imaginary time τ,
and jRi ¼ jr1; r2;…; rNi, with ri the particle positions. In
the PIGS approach [26–28], one exploits the formal
identity betweenGðR;R0; τÞ and the thermal density matrix
of the system at an inverse temperature of ϵ≡ 1=T (we
measure energy in units of Kelvins according to 1 K ¼
8.617 × 10−5 eV, such that ℏ2=2m ¼ 6.059 615 KÅ2),
namely, ρðR;R0; ϵÞ. In this manner, the ground-state wave
function of the system, Ψ0ðRÞ, can be asymptotically
projected out of a trial wave function, ΨTðRÞ, according to

Ψ0ðRMÞ ¼
Z YM−1

i¼0

dRi ρðRi;Riþ1; ϵÞΨTðR0Þ: ð2Þ

Likewise, the ground-state average value of any physical
observable can be written in terms of a multidimensional

integral that can be calculated exactly, within statistical
uncertainties, independently of whether the corresponding
operator commutes or not with the Hamiltonian of the
system. The only requirement for the trial wave function
ΨT is to satisfy the symmetry conditions imposed by the
statistics of the simulated quantum many-body system. In
this Letter, since we are dealing with boson particles, we
consider a symmetrized trial wave function of the Jastrow
type that typically is employed in quantum Monte Carlo
(QMC) simulation of quantum liquids [28].
The central physical quantity in our PIGS study is the

one-body density matrix (OBDM), which is defined as

ρ1ðr1; r01Þ ¼
1

Z

Z
dr2;…; drN ρðR;R0Þ; ð3Þ

where the two configurations jRi ¼ jr1; r2;…; rNi and
jR0i ¼ jr01; r2;…; rNi differ only in one particle coordinate,
and Z represents the quantum partition function of the
system. In the PIGS approach, ρ1ðr1; r01Þ is computed by
tracking the distances between the two extremities of one
open chain (worm) during the QMC sampling [40].
Importantly, the condensate fraction of an N-boson system,
n0, can be deduced from the long-range asymptotic
behavior of the OBDM,

n0 ¼ lim
jr1−r01j→∞

ρ1ðr1; r01Þ: ð4Þ

We carried out PIGS simulations of hcp 4He crystals
containing edge dislocations with their lines in the basal
plane and with the Burgers vectors oriented in the basal
plane and along the c axis, respectively, as well as for the
screw dislocation with the Burgers vector parallel to the c
axis. The interactions between He atoms were modeled
using the pairwise Aziz potential [41]. The computational
cells employed in the calculations are shown in Fig. 1.
Depending on the type of edge dislocation, two different
setups were employed. Figure 1(a) displays the arrange-
ment utilized for the basal edge (BE) dislocation. It is
analogous to that used in Ref. [38], containing a pair of
edge dislocations with opposite Burgers vectors of the type
b ¼ 1

3
½12̄10� dissociated into Shockley partials [11] with

Burgers vectors of the kind b ¼ 1
3
½11̄00� separated by a

stacking-fault ribbon. PBCs were applied in all three
directions and the cell contained 1872 atoms. As shown
in Fig. 1(b), a different approach was adopted for the c-axis
edge (CE) dislocation with Burgers vector b ¼ ½0001�.
While a dipole setup would also be possible, it would
require simulating numbers of atoms that are prohibitively
large for the excessively demanding PIGS calculations.
Therefore, we employed a cell containing only a single CE
dislocation, applying PBCs along the dislocation-line
direction and the c axis while fixing the top and bottom
two layers in the ½101̄0� directions. This is a standard
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approach that has been routinely used in atomistic simu-
lations of dislocations [39,42,43] and preserves transla-
tional symmetry along the glide direction. The cell contains
a total of 2280 atoms, of which 2052 were treated explicitly,
whereas the remaining 228 atoms were fixed in the top and
bottom layers. The CE dislocation dissociates into two
Frank partial dislocations with Burgers vectors of the type
b ¼ 1

6
½202̄3� (Ref. [11], pg. 361) separated by a ribbon of

stacking fault. A similar single-dislocation setup was also
employed for the c-axis screw (CS) dislocation, as shown
in Fig. 1(c), with a cell containing 1920 of which 228 atoms
in the surface layers were held fixed. For all dislocation
cells the atomic number density was held fixed at
ρ ¼ 0.0287 Å−3, which corresponds to a lattice parameter
of a ¼ 3.67 Å. The number of time slices used in Eq. (2)
was M ¼ 25 and an imaginary-time step of τ ¼
0.0125 K−1. We have verified that larger values of M
and smaller values of τ do not modify our results within the
statistical uncertainties (see Supplemental Material [44]).
Finally, for comparison with the defect-cell results, we also
carried out subsidiary calculations for defect-free hcp 4He
at the same density, employing a fully periodic cell
containing 180 atoms.
The red circles in Fig. 2(a) and the red and grey circles in

Fig. 2(b) show the PIGS results for the zero-temperature

OBDM of hcp 4He crystals containing, respectively, the
BE, CS, and CE dislocations. In all cases, ρ1 clearly
exhibits a generally decreasing tendency under increasing
radial distance r≡ jr1 − r01j (note the logarithmic y scale in
the graphs). For the BE dislocation, the steady OBDM
reduction is slightly smaller than for the CS and CE
dislocations; for example, at a radial distance of ∼7 Å
the one-body density matrix has reduced to ∼10−5 in the
former case compared to ∼10−6 for the latter. Nevertheless,
the slopes of all ρ1 asymptotes are manifestly negative. This
is clear evidence that the Bose-Einstein condensate fraction
[Eq. (4)] of bulk hcp 4He containing these types of
dislocations is negligible in practice (≤ 10−6) as ρ1 tends
to zero in the limit of long radial distances. For further
comparison, the blue circles in Figs. 2(a) and 2(b) display
the PIGS OBDM calculations carried out for the defect-free
hcp 4He cell at the same density.

(a) (b) (c)

FIG. 1. Computational cells employed in the zero-temperature
PIGS simulations of edge and screw dislocations in hcp 4He as
visualized using the OVITO package [45]. Atoms shown in red and
green are located in hcp and fcc surroundings, respectively. In all
panels, the total Burgers vector b is indicated by the black arrow
(a) Dipole arrangement for the edge dislocations with the Burgers
vector in the basal plane, with PBCs applied in all directions,
following Ref. [38]. Each dislocation is dissociated into Shockley
partial dislocations separated by a ribbon of stacking fault.
(b) Setup for the single edge dislocation with the Burgers vector
oriented along the c axis dissociated into two Frank partials, with
PBCs applied along the dislocation line as well as the c axis. The
blue spheres in the upper and lower regions depict frozen atoms.
(c) Setup for single screw dislocation with the Burgers vector
oriented along the c axis, with PBCs applied along the dislocation
line as well as the ½101̄0� directions. The blue spheres in the upper
and lower regions depict frozen atoms. Blue atoms in the central
region are close to the dislocation core.

FIG. 2. PIGS one-body density matrix results obtained at zero
temperature for hcp 4He for the cells containing (a) a BE
dislocation (red circles) and (b) CS (grey circles) and CE
dislocation (red circles). The y axis is in logarithmic scale. For
comparison, PIGS results obtained for defect-free bulk hcp 4He at
the same density (blue circles) as well as the liquid at a density of
0.0227 Å−3 (black circles) are also shown.
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The results for these dislocation systems display the
same general trend as seen for the defect-free crystal,
providing further support for our conclusion of negligible
n0 in the presence of these types of dislocations. As a final
consistency check, we carried out an additional simulation
starting from the CE dislocation cell, but reducing its
density to 0.0227 Å−3 to induce a transition into the liquid
phase. The corresponding ODLRO, obtained after reaching
the equilibrated liquid, is shown as the black circles in
Fig. 2(b). The Bose-Einstein condensate fraction obtained
in this case, employing the same PIGS approach applied to
the solid-phase systems, is found to be n0 ∼ 0.02. This is in
agreement with the known value corresponding to bulk
liquid 4He at that density at ultralow temperatures [46],
attesting to the numerical reliability of our zero-temperature
computational approach.
The fact that the zero-temperature OBDM results in

Fig. 2 display a practically null Bose-Einstein condensate
fraction (i.e., ≲10−6) in both the defect-free as well as
defected 4He crystal is compelling evidence that the cores
of the considered types of dislocations are in fact insulating
in nature. The lack of quantum mass flux along the
dislocation cores can be further verified by visual inspec-
tion of the quantum polymers during the simulation. A
representative example is depicted in Fig. 3 for the case of
the dissociated CE dislocation. Figure 3(a) and the main
panel of Fig. 3(b) display the centroids (i.e., the “centers of
mass” of the quantum polymers) for the initial and final
configurations of the PIGS simulation, respectively. Both
pictures qualitatively demonstrate the prevalence of atomic

order, including the regions of the partial dislocation cores.
Furthermore, when visualizing entire quantum polymers in
the core region as depicted in the expanded view, there are
no evident traces of long-winding quantum exchanges [40],
thus corroborating the absence of superfluidity in these
dislocation cores.
While the absence of superfluidity for the BE disloca-

tions is consistent with the PIMC calculations reported in
Ref. [38] and the unpublished data referred to in Ref. [47],
the present PIGS results for the CS and CE dislocations are
at odds with the findings in Refs. [23,24] as well as the
proposed mechanism of “superclimb” of dislocations
[24,25]. Accordingly, our results are incompatible with
the superfluid dislocation network interpretation of the
mass flux experiments, and lend support to the alternate
view that effects related to disordered regions at internal
interfaces, including vessel walls and grain boundaries, are
responsible for the observations [18,19].
A further issue with the superfluid-network interpreta-

tion is that, given the consensus that dislocations with the
Burgers vectors in the basal plane are insulating [38,47], it
relies fundamentally on the presence of a spanning network
consisting entirely of dislocations with the c-axis Burgers
vectors. Such an arrangement of dislocations, however, is
geometrically impossible due to the requirement of con-
servation of the Burgers vector at network nodes [11]. In
contrast, there is abundant experimental evidence [6,8,48–
51] for the existence of networks of nonsuperfluid basal-
plane Burgers-vector dislocations, which drive the domi-
nant mode of basal slip in hcp 4He [50,51]. They play a

FIG. 3. Visualization of the 4He system containing the dissociated CE dislocation, displaying quantum polymer “centroids.” (a) Initial
configuration, which was obtained by equilibrating the system at T ¼ 1 Kwith the PIMCmethod. (b) Final configuration. Inset shows a
few quantum polymers located at a similar distance within the dislocation core. Long chains of atomic exchanges involving several
quantum polymers are absent.
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central role in the phenomenon of giant plasticity [8], as
well as in the nonsupersolid explanation of the original
torsion-oscillator observations by Kim and Chan [6]. This
premise is also consistent with findings in other hcp-
structured materials such as Zn [52] and Mg [53] in which
observed dislocation networks display the characteristic
hexagonal structure of basal-plane Burgers vector disloca-
tions. In this light, the present results further challenge the
superfluid dislocation-network interpretation of the mass-
flux-experiment observations and call for further exper-
imental investigation.
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