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Electron Polarization in Ultrarelativistic Plasma Current Filamentation Instabilities
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Plasma current filamentation of an ultrarelativistic electron beam impinging on an overdense plasma is
investigated, with emphasis on radiation-induced electron polarization. Particle-in-cell simulations provide
the classification and in-depth analysis of three different regimes of the current filaments, namely, the
normal filament, abnormal filament, and quenching regimes. We show that electron radiative polarization
emerges during the instability along the azimuthal direction in the momentum space, which significantly
varies across the regimes. We put forward an intuitive Hamiltonian model to trace the origin of the electron
polarization dynamics. In particular, we discern the role of nonlinear transverse motion of plasma filaments,
which induces asymmetry in radiative spin flips, yielding an accumulation of electron polarization. Our
results break the conventional perception that quasisymmetric fields are inefficient for generating radiative
spin-polarized beams, suggesting the potential of electron polarization as a source of new information on

laboratory and astrophysical plasma instabilities.
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Current filamentation instability (CFI) [1-3], triggered
by the interpenetration of counterstreaming plasma flows,
fragments the driving beam into narrow dense filaments
and thereby amplifies self-generated magnetic fields [4-8].
It is crucial in regulating various plasma phenomena.
Microscopically, CFI modifies the electron energy depo-
sition in inertial confinement fusion [9—-13], constrains the
accelerating gradient of wakefield accelerators [14-16],
and magnifies magnetic fields in a nonlinear stage follow-
ing the saturation of the linear Weibel instability [17]. In the
astrophysical world, CFI can catalyze the supernova
remnant collisionless shocks [18-23], instigate stochastic
acceleration in turbulent reconnection [24—27], and reshape
the afterglow radiation following y-ray bursts [28-31]. The
latest investigations reveal that CFI facilitates the inter-
pretation of Saturn’s bow shock transition [32] and coher-
ent emission of fast radio bursts [33]. The advancement of
laboratory astrophysical platforms [34-37] will promote
further in-depth experimental study of CFI dynamics
[38-42].

The radiation of ultrarelativistic electrons inside the CFI
can lead to generation of compact high-brilliance y rays
[43] and copious e'e™ pairs [44]. State-of-the-art tech-
niques of compressed energetic beams such as FACET-II
[45,46] will further foster these processes. Recently, it has
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been recognized that electrons can be spin polarized in
symmetry-broken magnetic fields [47-53] due to radiative
spin flips, intrinsically accompanying y photon emissions
[54-56]. One may ask whether the electrons can be
radiatively spin polarized in such an ultrarelativistic CFI
in spite of quasisymmetric fields and how the features of
electron spin polarization (SP) are correlated with its
underlying mechanisms. Answering these questions will
bring to light new details of pertinent plasma instabilities
using the SP information.

In this Letter, we investigate the dynamics of ultra-
relativistic plasma CFI, employing electron spin resolved
particle-in-cell simulations. The classification into three
different CFI regimes is introduced based on the distinct
collective behavior and radiative spin-flip mechanisms:
normal filament (NF), abnormal filament (ANF), and
quenching regimes. We indicate the different topological
structures of filaments in the transverse plane in NF and
ANF regimes, which results in different filament merging
dynamics. The latter has a direct impact on the spontaneous
SP of the beam electrons, which are spin polarized along
the azimuthal direction in momentum space. While the
electron SP is influenced by the strength of the magnetic
fields, the nonlinear transverse motion of the current
filaments is found to be vital for the effective accumulation
of net SP. The latter generally appears in the ANF scenario
with topologically connected beam electron filaments. In
the NF situation, however, the electron SP ratio is weak-
ened by the compensation of the nearly symmetric radiative
spin flips. The correlation between the emerging SP and
the collective behaviors presented here enables decoding
CFl-induced scenarios via polarization detection.
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In 2D particle-in-cell simulations, the domain in (x,y)
space has a dimension of 4 pm x 4 pm, with a cell size of
Ax = Ay = 1/256 pm. An ultrarelativistic electron beam
with density n,, =5x 10 cm™ and energy e, ~
10 GeV (available at FACET-II in the near future [46])
is initialized to propagate along the 4z direction. A
background plasma electron flow with a density n,. and
velocity v, ~ (npe/nye)c (c is the speed of light) is set to
neutralize the current density at the initial time. The three
main examples with n,, = 10%%,3 x 10?2, and 5 x 10** cm™
correspond to regimes referred to as ANF, NF, and quench-
ing, respectively. The ions, with charge Z; = 1, mass
m; = 1836m,, and density n,;, are stationary to neutralize
the charge density at the beginning. The computational area
is filled with 20 macroparticles for each species per cell and
periodic boundary conditions are used. The models of the
spin precession governed by the Thomas-Bargmann-
Michel-Telegdi equation [57,58] and the radiative spin flips
are implemented in the EPOCH code [59,60] via spin resolved
quantum electrodynamical probabilities [70], using the
instantaneous spin quantization axis [71].

In the NF regime (n,, = 3 x 10*2 cm™?), ultrarelativistic
beam electrons are pinched into multiple filaments like a
rod array while the background electrons fill up the residual
area to encompass the beam filaments [Fig. 1(a)], which is
similar to the previously measured magnetic tube array
structure [72-74] so that it is termed as “normal filament.”
The background electrons are repetitively rebounded
between each filament and undergo backward motion at
the filament edges to sustain the return current and stabilize
the magnetic vortexes [60]. Following the filament coa-
lescence and vortex merging, the field strength grows up to
B, ~ 20 kT and the electron quantum invariant parameter
Xe = (eh/mic*)|F,,p*| is close to y, ~ 0.05, where F,, is
the field tensor, p* the electron four-momentum, m, (—e)
the electron mass (charge), and 7 the Planck constant. After
experiencing radiative spin flips and transverse deflection
by magnetic fields, the beam electrons possess a SP ratio
(S4) ~—3.4% [Fig. 1(b)], where S, =S¢, with &, =
(~py/p1.pa/p1.0) and py = (p2+ )2 represents
the SP along the azimuthal direction in the momentum
space [Fig. 1(e)]. According to Fig. 1(f), SP is insignificant
for high-energy electrons because of damped radiative spin
flips occurring with insufficient synchrotron photon emis-
sion. Therefore, the SP is calculated for electrons within the
lowest 5% energy to filter out the influence of no photon
emission.

In contrast, in the ANF case (np, = 10*2 cm™), the
electron spatial distribution shows a distinct filament
structure with background plasmoids encompassed by
ultrarelativistic beam electrons [Fig. 1(c)]. Topologically,
the roles of beam and background electrons are exchanged
with each other compared with the NF case, and thus this
regime is termed as “abnormal filament.” The key point for
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FIG. 1. (a) (c) Beam electron density n,, and the plasma
electrons’ polar angle 6, = arctan(p ., p). (b) (d) Electron SP
ratio S, where the streamlines denote the magnetic field B, ;. (a)
(b) and (c) (d) correspond to the NF and ANF cases, respectively.
(e) SPratio S, in (py/p.. px/p.) space, where the arrows denote
the SP direction and the blue bars show the electron number
ANy /d(py,/p.). () (Sy) and dNy./dey, Vs &, for the NF and
ANF cases.

the transition from NF to ANF is a counterintuitive feature
that the plasmoids gathering of the transversely expelled
ions is faster than the pinching of the beam electrons.
More simply, the ions respond to the presence of the self-
generated plasma fields earlier than the beam electrons.
We may estimate the response time of the ions 7}, ~
[minye/le|*Zink.]'/* [60], and the beam electrons ff,~
[m,7ve/|€|*ne] /2. The criterion /. <17 is equivalent to
Npe S Nfe = Zim,NyeYe/m;, Where ype = epe/m,c?. In the
ANF regime, the SP ratio is enhanced to (S;) ~ —10.6%
[Figs. 1(d) and 1(f)]. While the SP enhancement could be
attributed to the increased magnetic field strength B, , ~
34 kT (y, ~ 0.06), however, we found that the main reason
is different and connected with the deviating dynamics of
the filament merging, namely, with the pronounced non-
linear transverse motion of the beam filaments, which we
discuss below.

At high plasma densities the quenching regime sets in
[Fig. 2(a)], where the magnetic field energy e, instead of
growing up, declines by two orders of magnitude, which is
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FIG. 2. (a) Temporal evolution of the magnetic energy ratio
ep/€neo and the radiative SP strength |dS/dt.q|. (b) Work
contribution W) , for the background electrons. (c) dN./d0,.
vs Op. (d) Time evolution of gyroradius distribution dN /7,
where the dashed lines show the averaged value and the gray band
denotes the scale length rp.

the reason for the “quenching” terming. Different from the
no quenching situation where the energy gain of back-
ground electrons mainly originates from the longitudinal
acceleration W) = [ —v,E.dt [60], in quenching scenario
the background electrons are efficiently accelerated by the
transverse sheath field E,, surrounding the exterior of
filaments [Fig. 2(b)], and thus they are too energetic to be
rebounded by the weak magnetic fields. The angular
distribution of background electrons dN,./d0,. illustrates
that these electrons primarily move along the transverse
direction and are no longer deflected backward to sustain
the return current [Fig. 2(c)]. The unconstrained transverse
motion tends to smear out the inhomogeneity of the plasma
density and subsequently the magnetic field B, , is gradu-
ally dissipated. As a result, the radiative SP is drastically
reduced [Fig. 2(a)], with the negligible final SP ratio
(S4) ~ —0.02%. We can formulate the quenching criterion
by the condition that the gyroradius of background elec-
trons r, ~ ypm,vpe/|e|B, , is larger than the scale size of
the magnetic vortex rz ~ 27c/w,e, as validated by the
simulation results for the r, evolution [Fig. 2(d)]. This
condition means, see Ref. [60], that quenching sets in at
high plasma densities n,. 2 npe = V272 iy, with p ~7.2.

After combining the criterion of ANF and quenching
occurrence, the valid ranges of the NF, ANF, and quenching
regimes are derived as np. < np. < npe, Npe S Npe, and
Npe 2 npe, respectively. These criteria are proven by the
parameter scans of simulations in (71pe, ¥pe) and (1, Mpe )
space [Figs. 3(a) and 3(b)]. To exhibit the distinct SP
properties in the three regimes, we change the background
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FIG. 3. Parameter scans in (a) (Mpe. Ype. the = 5 X 102 cm™)
and (b) (Mpe, e, Ype = 2 X 10%) space, where the markers present
the regimes identified by simulations while the regions with red,
blue, and green color correspond, respectively, to the ANF, NF,
and quenching regimes predicted by nf, and nf.. (c) Dependence
of (S;) and (B) on ny.. (d) o(Sy) Vs ny., where the inset
shows the angular distribution of Sy for the cases of NF n,, =
3 x 10?! cm™3 (blue) and ANF 10*' cm™3 (red). In (¢),(d), npe =
5% 10%° cm™ and y,,, = 2 x 10*.

plasma density n,. while fixing the beam electron param-
eters ny, and y.. The variation of the SP ratio (S,) and
effective magnetic field (B) versus n, in Fig. 3(c)
demonstrates (i) (S;) and (B) are negligible in the
quenching regime; (ii) both (S,) and (B) exhibit linear
variation tendency in the NF regime; (iii) in ANF, (S,)
increases but (B) stays nearly unchanged when n,
decreases. The latter property indicates that the stronger
magnetic field in ANF with respect to NF cannot solely
explain the larger SP. Another distinct feature between
ANF and NF regimes is the inhomogeneity of the SP
angular distribution S, vs ¢ [¢hpe = arctan2(p,, p,)]. The
inhomogeneity quantified by the dispersion of the angular
distribution &(S,) [75] is significantly larger in the ANF
regime [Fig. 3(d)].

Returning to the question of the high SP in ANF, during
filament merging in the ANF, the topological connected-
ness of the ultrarelativistic electron flow leads to a
pronounced nonlinear transverse motion of the beam
filaments because of the lack of the impediment of the
background plasma in contrast to NF. This transverse
motion is critical to enhance the SP ratio. We have
developed a 1D Hamiltonian model to analyze this effect
[Fig. 4(a)]. Assume the transverse velocity of the filament is
vy, and the magnetic vortex field exerted on the electron

By (x — vyt). In the vortex’s comoving frame & = x — v,
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FIG. 4. (a) Schematic of drifting (red) and confined (blue)

electron dynamics, where the vortexes present the magnetic field.
(b) Electron trajectories with ay = 10™* > g (red) and 107° <
aj (blue) in (&, v,). (c) Time evolution of dS,/dt,q (black) and
68, (blue). In (b),(c) the parameters are éo =0.002, yp. = 10%,
and xp = 0.5, ie., ay~14x 107°. d) A drifting electron
trajectory (in rainbow color code), where streamlines present
the magnetic field at different time while the red or yellow dots
refer to photon emission accompanied with negative or positive
spin flips. (¢) Temporal evolution of S for drifting (red) and
confined (blue) electrons.

the electron dynamics is characterized by the equations
g'& = v, — vy and = —-d¥(¢)/dé — ay, where ay = vy is
the vortex’s acceleration, and 5 the relative velocity of the
electron inside the magnetic vortex (the overdot is a time
derivative). ¥(&) = — ['|e|cBy(£)/rvedé is the potential of
the magnetic vortex field, given v, ~ c. The equation of
motion above can be reformulated as the conserved
Hamiltonian

HEd) =3B + () + ak (1

Equation (1) describes the electron oscillatory dynamics:

de/dt = £1/2[2a0(E - &) = V() = &7 [60], where & =
&y and 5 = &0 are the initial conditions at = 0. Assuming
B, (&) = —kgé& (in accordance with the simulation results),

and (&) = Q2&%/2 with Q = +/kg|e|c/ e, the oscillatory

motion within the magnetic vortex is

f—foésin9t+<fo+§> coth—g, (2)
featuring either confined (ay — 0) or drifting motion
[Figs. 4(a) and 4(b)]. This oscillatory dynamics is accom-
panied by photon emissions and by consequent radiative
spin flips and radiative polarization of electrons.

Based on Eq. (2), the evolution of electron SP is calcu-

lated as [60]

@ N_MQW(Z ) B»"@) Ux (3)
df rad h Ve ¢ |By(cf)| |1}x ’

where W()(e) = f2)(f,h/[3)(g()(e _)(ph)]Kl/3(u)d)(ph’ u=
2o/ [3%e(xe = xpn)]> and K 3 is the modified secondary

Bessel function. The term IT = (B, /|B,|)(v,/|v,|) charac-
terizing the SP reads approximately (at £, = 0 and v, =
Vyo at r = 0)

aol

éo . ag
Hoc(’)(t)+a0<§tstt+@tcoth—E , (4)

where O(¢) is periodic with frequency Q and does not lead
to a net average SP (usually the case for the NF regime).
The second term in Eq. (4) linearly proportional to ¢ yields
net SP when the filament transverse acceleration is large
ap 2 ay = chQ, which is the case in the ANF regime. While
for the confined case with ay < ay), the SP gain and loss
compensate each other due to the nearly symmetric spin
flips [60], for the drifting case with the moving magnetic
vortex ag > a, the oscillations and spin flips are not
symmetric [60], which leads to the pronounced net SP
gain [Fig. 4(¢)].

The Hamiltonian analysis is confirmed by the simulation
results of the ANF case. Figure 4(d) presents a represen-
tative electron comoving with the magnetic vortex, where
the photon emission accompanied by a negative spin flip
dS,;/dt < 0 dominates the whole emission procedure [60].
The electron SP gradually rises up to Sy~ —10%
[Fig. 4(e)]. Note that there are confined electrons existing
in the ANF case as well since some plasma filaments move
too slowly to satisfy ag 2 a;.

The correlation between (S,,) and (B) is shown in Fig. 5.
The slope of the correlation in the ANF is distinct from NF,
which stems from the net SP &S, accumulated by the
different periods of the electron oscillation in the drifting
magnetic vortex in ANF. This correlation can be explained
by a combination of (S;)ixr and (S;)Ane [Fig. 51, where
(Sp)ane = Jo (2n/%2) dS/dtqdt is the numerical integral of
Eq. (3) and the integer n denotes the number of oscillation
periods. In contrast, the SP gain S in the NF originates
from electrons’ uncompensated half period oscillations
while the one with integer period would lead to 65, ~ 0.

Considering y, ~0.05 and W(y,) ~ 0.572/* ~ 0.006
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FIG. 5. Correlation between (S,) and (B), where the color
filled in the markers denotes o(S,).

obtained from the simulation results in the NF cases, the
radiative SP ratio can be estimated as (S;)kg~

\/§;7af [ (27)\/Yve/ MenpW(x.)(B) with the coefficient
n =~ 0.4 accounting for the nonuniform amplitude in inte-
gration [60]. The discrepancy between (S,) & and (Sy)Ang
underlines the significant influence of the nonlinear trans-
verse drifting motion of filaments on the electron SP.

Additional 3D simulations are performed and the results
qualitatively reproduce those of the 2D simulations [60],
indicating that the plasma motion along the longitudinal
direction merely plays a secondary role in influencing the
features of the ultrarelativistic CFI and electron SP. The
kinetic mechanisms of CFI regimes identified here have
valuable implications for both laboratory and astrophysical
phenomena. As a concrete application, the filaments’
nonlinear transverse motion identified in the ANF regime
can be harnessed to compress in time the photon emission
and in this way to improve the peak brilliance of y-ray
sources in [43]. In astrophysics, the fast ion motion
discerned in the ANF regime may influence the internal
structure of collisionless shocks [76,77]. The ultrafast
coalescence dynamics characteristic for ANF could enable
the magnetic reconnection to drive stellar flares [78,79] and
work as scattering magnetic bodies to modulate the cosmic
ray’s transportation [80-82]. Furthermore, the ANF regime
also manifests that an asymmetric field is no longer a
necessity for producing spin-polarized plasmas, implying
the intrinsic existence of electron SP in the fast cooling
stage during a y-ray burst [28].

In conclusion, we have studied radiative SP of ultra-
relativistic beam electrons in plasma CFIL. Through particle-
in-cell simulations, three different current filament regimes
(NF, ANF, and quenching) could be qualitatively distin-
guished via the combined information of (S,) and angular
inhomogeneity (S,), which implies the potential of
electron SP to serve as a new information source in investi-
gating laboratory and astrophysical plasma instabilities.
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