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2Université de Bordeaux, CNRS, LOMA (UMR 5798), F-33405 Talence, France
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Transport of deformable particles in a honeycomb network is studied numerically. It is shown that the
particle deformability has a strong impact on their distribution in the network. For sufficiently soft particles,
we observe a short memory behavior from one bifurcation to the next, and the overall behavior consists in a
random partition of particles, exhibiting a diffusionlike transport. On the contrary, stiff enough particles
undergo a biased distribution whereby they follow a deterministic partition at bifurcations, due to long
memory. This leads to a lateral ballistic drift in the network at small concentration and anomalous
superdiffusion at larger concentration, even though the network is ordered. A further increase of
concentration enhances particle-particle interactions which shorten the memory effect, turning the particle
anomalous diffusion into a classical diffusion. We expect the drifting and diffusive regime transition to be
generic for deformable particles.
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Introduction.—Transport and nutrient delivery con-
vected by fluid flow in networks is ubiquitous in living
systems, such as fungal mycelia, plant, human tissues, etc.
[1,2]. The transport properties are certainly affected by the
topological nature of the channel networks [3–6]. Besides
network topology, the impact of other factors, like the
mechanical properties of particles, is not fully understood.
At microscopic scale, the particles typically are compa-

rable in size to the channel sizes, and the particle properties
such as stiffness or shape can have profound effects on the
flow behavior. The nontrivial discrete nature of the sus-
pended elements is omnipresent in microfluidics, raising
challenging issues in terms of an effective description of
particle transport even in simple geometries [7–11]. Typical
examples are the occurrence of disruption of the particle
train via long range hydrodynamic interactions [10], as well
as the emergence of large scale oscillations of droplets in a
simple loop [11]. A more specific topic of interest exhibited
in various microfluidic configurations is lateral-cell migra-
tion: depending on their size and deformability soft
deformable cells display distinct hydrodynamical inter-
actions with obstacles or boundaries producing cocurrent
sorting [12,13]. Such mechanical based sorting is of interest
since most circulating cells lie in a narrow range of sizes
and shapes [13]. Furthermore, being of hydrodynamic
origin lateral-cell migration permits fast, low-cost, high-
throughput sorting [14]. Another example is provided by
red blood cells (RBCs). At the microcirculation scale,
RBCs have comparable size to vessel sizes, so that the
discrete nature of the blood comes to the fore [15–21]
sometimes leading to margination of stiffer RBCs [22].

Motivated by a basic understanding of the particle
sorting in microscale networks, we study, numerically,
the flow of deformable particles using a 2D vesicle model
(also see simulations of 3D particles in [23]), in a periodic
ordered network (in the form of a honeycomb), and analyze
their transport properties depending on their mechanical
parameters (affecting particle shape). In addition to deform-
able particle flows in microfluidic networks, the results can
give insight on the flow of RBCs in cardiovascular systems.
The predictions might be relevant in several diseases, such
as sickle cell anemia or malaria. Real microvascular net-
works consist of many short vessel segments having
lengths and widths in the range of hundreds of micrometers
and a few micrometers, respectively [24,25]. These vessel
lengths are not long enough to allow RBCs to achieve a
permanent regime regarding their spatial organization,
especially in the dilute case. In other words, the spatial
pattern of RBCs in a given vessel depends on upstream
history. This memory effect marks a break with the classic
image [26–28] according to which the spatial organization
of the suspension reaches steady state in each of the
branches. As a consequence, nontrivial results, such as
the manifestation of trajectories obeying anomalous dif-
fusion laws, are revealed. A remarkable property is the fact
that anomalous diffusion is not a consequence of a disorder
(unlike transport, for example, in porous media [29]), but is
the result of an intricate combination of particle deformation
and their mutual interactions.
A systematic study, based on numerical simulations,

reveals that the configurations (such as lateral position and
shape) of a deformable particle in the downstream position

PHYSICAL REVIEW LETTERS 130, 014001 (2023)
Featured in Physics

0031-9007=23=130(1)=014001(6) 014001-1 © 2023 American Physical Society

https://orcid.org/0000-0003-4544-6463
https://orcid.org/0000-0003-4108-9550
https://orcid.org/0000-0001-5793-8102
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.014001&domain=pdf&date_stamp=2023-01-03
https://doi.org/10.1103/PhysRevLett.130.014001
https://doi.org/10.1103/PhysRevLett.130.014001
https://doi.org/10.1103/PhysRevLett.130.014001
https://doi.org/10.1103/PhysRevLett.130.014001


depends on the previous states of the particle in the
upstream position. This results in various particle configu-
rations from one bifurcation to the next. Our study
considers particles both in 2D and 3D [23]. We closely
inspect individual particle dynamics and reveal that their
specific trajectories impact the overall lateral transport of
suspension in the network. It will be shown that, the particle
lateral transport, depending on particle stiffness and con-
centration, covers a rich panel of behaviors from classical to
anomalous diffusion and to ballistic motion. In particular,
rigid particles follow a ballistic motion at small concen-
trations. Increasing the concentration further enhances
particle-particle interactions, resulting in a crossover from
anomalous to diffusionlike transport.
Model.—The suspension is injected at upper feeding

vessels [vertical arrows at top surface of Fig. 1(a)] and
spreads out laterally to feed the network. We consider an
ordered network with hexagonal loops [Fig. 1(a)]. This is
inspired by microvascular patterns, such as those encoun-
tered inmucosal capillary networks [30].On theother hand, a
regular geometry allows us to reduce the complexity and
concentrate on the impact of particle mechanical properties
only. A constant body force (in the−Y direction) is applied to
drive the fluid, with periodic boundary conditions inX and Y
directions. The fluid flow is obtained from solving Navier-
Stokes equations using the lattice Boltzmannmethod (LBM)
[31]. The RBC-like particle is modeled as a vesicle with a
biconcave shape using a two-dimensional springmodel [31].
The reduced area is defined as ν ¼ ðA=πÞ=½P=ð2πÞ�2, where
A and P are the area and perimeter of the particle, respec-
tively, and the particle radius R is defined as

ffiffiffiffiffiffiffiffiffi

A=π
p

. The
fluid-structure interaction is achieved by adopting the
immersed boundary method [31–33].

Particle deformation is characterized by the capillary
number, defined as Ca ¼ ηR3 _γ=κ, where κ is the bending
modulus of the particle membrane and _γ is a typical shear
rate of the imposed flow. In the absence of particles, a steady-
state Poiseuille flow, with a profile u ¼ um½1 − 4ðr=WÞ2� in
feeding channels, is designated, where um is the maximum
velocity, r is the lateral position in the channel, andW is the
channel’s width. The fluid incompressibility also imposes a
u=2 velocity in branches.We define _γ ¼ 2um=W as themean
shear rate in the feeding channel. Each vessel segment has a
length 40R (∼100 μm) and a width 4R (∼10 μm) in this
study (the effect of different widths is also considered in
[23]), which is consistent with microcirculation context
[15,21,24]. We examine the effect of multistage bifurcations
on the motion of particles with different membrane stiff-
nesses (different Ca’s).
Dynamics of a single particle.—First, we consider a

single particle in the whole network and analyze its
trajectory. This provides an interesting basis for the under-
standing of the many particle behavior. In order to highlight
the effect of particle shape adaptation, we first consider the
behavior of a fully rigid circular particle (undeformable).
The particle follows the fluid streamlines and shows a
zigzaglike trajectory without global lateral migration within
the network [Fig. 1(b), black particle]. Our simulation for a
high reduced area (close to a circular shape and weak
deformation) agrees with this prediction, showing again a
zigzaglike trajectory [ν ¼ 0.96 in Fig. 1(c)].
In view of the above results one might naively be

tempted to expect that a noncircular but rigid particle will
have behavior closer to the circular particle. Surprisingly, a
rigid enough particle but far from a circular shape (i.e.,
ν ¼ 0.7) does not follow the trend of a circular particle,
while in contrast a softer particle displays a closer behavior
to the circular one [Fig. 1(c)]. The results show that a softer
particle exhibits an erratic trajectory [ν ¼ 0.7, Ca ¼ 25 in
Fig. 1(c)], whereas a rigid particle reveals a deterministic
sideways drift [ν ¼ 0.7, Ca ¼ 2.5 in Fig. 1(c)]. The same
behavior is also observed in 3D [23].
The understanding of this behavior is quite subtle. For a

small reduced area, a rigid particle assumes a constant tank-
treading inclination angle [ν ¼ 0.88, 0.8, 0.7 and Ca ¼ 2.5
in Fig. 1(c)]. If the particle is initially close to its right wall
[top of Fig. 1(b), magenta particle], when it approaches the
bifurcation, its orientation points towards its left branch,
conferring it a higher probability to enter that branch. Once
it enters the branch, the particle stays again close to its right
wall of the new branch, and finds itself in the same
configuration as in the previous feeding channel, and so
on, giving rise to a sideways drift [see, e.g., ν ¼ 0.7, Ca ¼
2.5 in Fig. 1(c)]. We refer to this case as a long memory
behavior. This behavior is associated with a significant
particle shape deviation from a circle, and a strong rigidity.
The situation is different for a soft particle. The particle is

deformed into a parachute shape instead of the slipper

(a)

WL

X
Y

(b)

(c)

FIG. 1. (a) A snapshot showing the simulation system. The
particles flow in a hexagonal network, where each segment of the
channel has length L and width W. The hollow arrows show
the flow directions in the channels. (b) Schematic trajectories of a
rigid sphere (black), a rigid nonspherical particle (magenta), and a
soft particle (blue) in the network. (c) Trajectories of a single
particle in the network for different reduced area and capillary
numbers. The particle shapes in the center of the feeding channel
are plotted for the corresponding parameters.
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shape in the rigid situation. Because of its quasisymmetrical
shape when the particle hits the bifurcation, it has approx-
imately equal probabilities to select either branch at the
bifurcation [Fig. 1(b), blue particle]. A systematic analysis
reveals that when Ca increases, we observe a distribution of
deformations a=b [the size ratio defined in Fig. 2(c)] and
lateral positions ΔX [Fig. 2(c)] at the midpoint of the
successive feeding channels [Fig. 2(a)]. The variability
broadens upon increasing Ca and the sideways preference
of entering a definite branch (left or right) is lost when Ca is
approximately larger than 12.5 [Fig. 2(a)]. We refer to this
case as a short memory behavior.
In summary, for a shape significantly far away from a

circle, a soft enough particle undergoes a random walk at
bifurcation and adopts a diffusionlike spreading [the mean
squared displacement (MSD) behaves as ∼t] along the
lateral direction in the network. A more rigid particle shows
a deterministic drift and exhibits a ballistic behavior, with a
MSD behaving as ∼t2. The observations for a single
particle, lead us to expect similar phenomena for the
many-particle systems, at low concentrations (where par-
ticle-particle interactions are not dominant).
Lateral transport.—Next, we focus on how an initially

centered suspension spreads out laterally (in X direction)
throughout the network. First, we consider the propagation
of a suspension front in a network with lateral size of about
2000R (corresponding to 28 unit network hexagonal cells).
The particles are initially positioned randomly in the middle
of the network (within a range of 160R) with a high
local concentration (around 40%, with N ¼ 600 particles).
A typical passage time t0 ¼ ðL=umÞ þ ðL=0.5umÞ ¼
ð3L=umÞ is defined as the convection time through a feeding
channel and a branch (L is the length of the branch
[Fig. 1(a)]). We then use a normalized time as t� ¼ t=t0.
The particles are advected by the flow, while at the bifurca-
tion, they interact with the boundaries and among each other,
ultimately entering a branch (left or right).

For a large Ca (corresponding to soft particles), the front
of the particle distribution spreads out laterally (along X)
with a diffusionlike behavior [Figs. 3(a) and 3(c) for
Ca ¼ 20]. In contrast, when Ca is small (corresponding
to rigid particles), a systematic drift of the particle front is
observed [Figs. 3(b) and 3(d) for Ca ¼ 2]. We refer to the
last regime as a drift regime.
The dynamics of particles is quantified by measuring the

MSD in the lateral direction (MSD ¼ hjXðtÞ − X0j2i),
where XðtÞ is the actual particle lateral position. The
measurements are carried out for two values of Ca ¼ 20
and Ca ¼ 2 corresponding to soft and rigid particles in
Figs. 3(a) and 3(b), respectively. For each capillary number,
we examine five cases with different values of the imposed
velocities. More precisely, we keep Ca fixed while selecting
five different imposed speeds and five different bending
moduli. Different parametric curves are presented with
different symbols in Fig. 4(a). The selected velocities yield
particle Reynolds numbers from 0.1 to 1. The data collapse
obtained in Fig. 4(a) demonstrates that the observed
behaviors are dominated by the particle deformability,
and suggests a minor impact of the inertia effects. For Ca ¼
20 (soft particles) the MSD shows a t1.4 scaling [Fig. 4(a)],
while for Ca ¼ 2 (rigid particles), it behaves as t2.7

[Fig. 4(a)]. We have explored a wide range of Ca’s, from
1 to 20, identifying a continuous evolution of the scaling
exponent α, from a high value 2.7 (for Ca < 4) to a low
value 1.4 (for Ca > 10) [Fig. 4(b)]. The observed many
particle dynamics shows agreement with the prediction
based on the individual particle dynamics. The exponents
1.4 and 2.7 of the MSD to superdiffusive and superballistic
values are obtained, instead of diffusive (exponent equal to
1) and ballistic (exponent equal to 2) regimes. These large
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FIG. 2. (a) Deviation of the particle mass center from channel
centerline (ΔX) versus deformation a=b measured at the mid-
point of the feeding channel for different Ca. The bifurcation of
ΔX shows that the single particle starts to erratically enter the
branch when Ca is approximately larger than 12.5. (b),(c) The
time series of particle configurations at a bifurcation are given for
(b) Ca ¼ 2.5 and (c) Ca ¼ 25.
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FIG. 3. (a) and (b) The time evolution of particle positions
under the condition of (a) Ca ¼ 20 and (b) Ca ¼ 2. (c) and
(d) The concentration profile along the lateral direction (X) at
different times, corresponding to the configurations shown in (a)
and (b).
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values of the exponents are understood as follows: The
local concentration in the central feeding vessels becomes
weaker with time. Since the driving pressure is fixed, the
flow rate increases with time in the feeding vessels due to
the local concentration decline (see quantification of this
effect in Fig. S2 in [23]). This time-dependent speed
naturally amplifies the front speed, explaining the apparent
tendency of a superdiffusive and superballistic nature,
shown in Fig. 4. We show below that by enforcing a
homogeneous concentration in the network true diffusive
and ballistic behaviors are recovered [dilute regime in
Fig. 5(c)].
Particle-particle collision-induced diffusion.—Here,

instead of initializing a suspension in the central part of
the network, we consider an initially homogeneous dis-
tribution in the whole network. This configuration can be
encountered, for example, in microcirculation; the RBCs
are expected (on average) to uniformly explore the net-
work, instead of having a free front spreading laterally
throughout the network. We consider a smaller size
146.6R × 127R (2 unit network hexagonal cells in the
lateral direction) with periodic boundary conditions. We
analyze the trajectory of each particle and measure the

MSD, which is averaged over all particles [Fig. 5]. We
identify various regimes, going continuously from drift to
anomalous diffusion and then to classical diffusion, when
particle mechanical properties and concentrations are
varied. In a marked contrast with anomalous diffusion in
complex disordered media (e.g., porous media [29]), our
geometry is ordered.
The particles are evenly and randomly initialized in the

whole network. When concentration increases, the particle-
particle interaction becomes relevant, leading to random
partition at bifurcations [34]. This suppresses the deter-
ministic drifting for rigid particles. Note that the diffusion-
like transport for the soft particle is unaffected [Ca ¼ 16

in Figs. 5(b) and 5(c)]. For rigid particles [Ca ¼ 2 in
Figs. 5(a) and 5(c)], in the dilute regime, as expected, we
find a ballistic regime. However, the scaling exponent of
the lateral MSD decreases when the concentration increases
[Figs. 5(a) and 5(c)] and the lateral transport shows a
diffusive behavior, similar to that exhibited by the soft
particles. This drift-diffusion transition occurs for a critical
volume fraction ϕc ≃ 15% [Fig. 5(c)]. Interestingly, this
concentration lies in the range of typical hematocrits in
human microcirculation (10%–26% [35]). Particle-particle
interaction may thus help in partially achieving an efficient
random exploration of vascular networks by RBCs, even
when RBCs suffer enhanced rigidity due to blood diseases,
such as sickle cell and malaria diseases.
Conclusions.—We have studied the influence of deform-

ability on the lateral transport of deformable particles in a
honeycomb network. We find that the individual dynamics
of the particle in the downstream position is history
dependent. This results in a rich behavior when the particle
meets a bifurcation. Overall, the softer particles explore
different shapes from one bifurcation to the next, resulting
in an erratic displacement in the network. At the dilute
regime, the more rigid particles are found to drift indefi-
nitely (when particle-particle interaction is negligible)
sideways (ballistic behavior) either to the left part or the
right part of the network, depending on initial conditions.
For a higher concentration, the combination of particle
mechanical properties and their mutual interactions leads to
anomalous diffusion.
Recent experiments on a single monocyte passing a

network reported that the more rigid cells follow a periodic
zigzag motion without global lateral displacement [36].
This opposite behavior may be attributed to the strong
confinement in the monocyte experiment. Our simulations
for smaller channel widths agree with experimental obser-
vations [36] (see Fig. S3 in [23]). We have considered here
an ideal honeycomb network to reduce the complexity and
focus only on mechanical properties. Real vascular net-
works are quite disordered [37], for which our LBM can
straightforwardly be adapted in the future. Besides helping
understand blood flow under physiological and pathologi-
cal conditions in microcirculation, this study may also shed
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light on biomedical applications such as the design of
appropriate networks for cell sorting and the conception of
tailored microparticles for a targeted drug delivery.
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