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We show that a generic relativistic membrane with in-plane pressure and surface density having the same
sign is unstable with respect to a series of warping mode instabilities with high wave numbers. We also
examine the criteria of instability for commonly studied exotic compact objects with membranes, such as
gravastars, anti–de Sitter bubbles, and thin-shell wormholes. For example, a gravastar which satisfies the
weak energy condition turns out to be dynamically unstable. A thin-layer black hole mimicker is stable
only if it has positive pressure and negative surface density (such as a wormhole), or vice versa.
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Introduction.—The detection of binary black hole (BH)
mergers with ground-based gravitational-wave (GW)
detectors [1–4], images of the supermassive BHs M87
and Sgr A� ith radio interferometry [5,6], and the obser-
vation of S stars orbiting a small dark region in the Galactic
Center [7], all point to the existence of BHs, of which a
description was first obtained by Schwarzschild more than
one hundred years ago using general relativity. The study of
BHs is not limited to astrophysics and general relativity, but
also plays a role in other major areas of physics, such as
quantum fields and strings, condensed matter physics, and
quantum information. Because of its unparalleled concep-
tual and observational importance, it is paramount to test
the more refined features of BHs against all viable alter-
natives allowed by the laws of nature. Any signal, e.g.,
ringdown quasinormal modes [8,9], that favors a BH
mimicker over BHs themselves would represent a funda-
mental breakthrough or revolution in physics. In the
coming decades the third-generation ground-based GW
detectors [10,11], the space-borne GW detectors [12,13],
and the next-generation Event Horizon Telescope, will
likely improve the precision of such tests by many orders.
Horizonless compact objects are important candidates

for BH mimickers [14]. One class of them, such as boson
stars, has smooth distributions of matter and fields that are
convenient for stability analysis and numerical simulations.
However, it appears difficult to construct stable configu-
rations of these compact stars that approach the compact-
ness of BHs. For example, a fluid star with causal equation
of state can achieve maximum compactness at around
M=R ≤ 0.355 [15,16], with M its mass and R its radius as
measured from the surface area. The bound for boson stars
is around 0.44 [17]. There are proposals for constructing
compact stars with anisotropic stress [18–24] to increase
the maximum compactness, but they often feature problems

such as superluminal sound speed, violation of energy
conditions, and lack of stability analysis. A recent study
showed that the bound can be improved to ∼0.376 by
including various prescriptions of elastic stress [25].
Another class of compact objects often includes a (or

multiple) membrane(s) that separates spacetime regions,
such as gravastars [26] and thin-shell wormholes [27,28].
These are interesting because this type of construction
allows the transition to the exterior spacetime, which is the
same as the BH spacetime, to be arbitrarily close to the
horizon of a corresponding BH. Therefore, these models
can have compactness arbitrarily close to that of BHs.
In addition, membranes are often invoked if there is
interesting physics happening near a certain surface, such
as proposals considering hard structures near BH horizons
motivated by firewalls or 2 − 2 holes [29,30]. Moreover,
compact objects with membranes are expected to have
distinct strong-gravity dynamic behavior from more uni-
form compact objects. For this latter reason, two-dimen-
sional domain walls have been extensively studied in
cosmology.
Here, we present a perturbation study of self-gravitating

membranes with nontrivial energy and stress. We find that
if the signs of the in-plane pressure and surface density in
the membrane are the same, there is a generic warping
instability for modes with sufficiently high wave numbers.
We apply these results to commonly studied compact
objects, and find that a significant portion of the parameter
space of gravastars—which are usually modeled by a de
Sitter interior and Schwarzschild exterior with a spherical
shell of matter at the boundary—and AdS bubbles (with
anti–de Sitter interiors) are dynamically unstable. Static
thin-shell wormholes always have positive pressure and
negative surface density, so that they are free from these
instabilities. Therefore, requiring membranes to have
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negative pressure (for positive surface density) and positive
pressure (for negative density) becomes a powerful quali-
fier for the stability of compact objects. Throughout this
Letter, we adopt geometric units (c ¼ G ¼ 1)
Membrane instability.—Let us consider a self-

gravitating membrane with intrasurface pressure sur-
rounded by vacuum. If the pressure is positive, any local
vertical displacement results in an “antirestoring” force that
pushes the mass element away from equilibrium, see Fig. 1.
On the other hand, the gravitational attraction from sur-
rounding mass elements tends to bring it back to equilib-
rium. We shall show that the antispring force always wins
in the eikonal limit, leading to a series of instabilities with
high wave number. To illustrate the basic picture, we
present the analysis in the Newtonian regime first before
proceeding to the relativistic case.
Consider a membrane placed in the (x-y) plane, with

surface density σ and surface pressure P. The displacement
field ξðx; yÞ can be decomposed as

ξ ¼ ξxêx þ ξyêy þ ξzêz: ð1Þ

We use δ to denote Eulerian perturbations and Δ to
denote Lagrangian perturbations. For example, the
Eulerian density fluctuation is given by δσ ¼ −∇k · ðσξÞ,
where ∇k here operates on the two horizontal directions,
and the Lagrangian density perturbation is given by
Δσ ¼ δσ þ ξ ·∇kσ. For the purpose of this analysis, we
only need to consider the case with ξz nonzero, in which
case the local area change of mass elements is second order
in ξ, i.e., δσ ¼ Δσ ¼ 0 at linear order.

The equation of motion for three-dimensional fluid
elements, in terms of Lagrangian variables, can be written
as [31]

ρ0

�
∂
2ξ

∂t2
þ∇ΔU − ð∇ · ξÞ∇U0

�
¼ ∇ · Δt; ð2Þ

where ρ0 is the unperturbed mass density, U0 is the
unperturbed gravitational potential, and t is the stress tensor
so that the right hand side represents the hydrodynamical
force acting on the fluid element. In other words, the left
hand side of the equation is the kinetic term and the right
hand side of the equation represents the external force.
Similarly, for a mass element on a two-dimensional disk,
we can write down the equation of motion as

σ0

�
∂
2ξ

∂t2
þ∇kΔU−ð∇k ·ξÞ∇U0

�
¼Fdisk-inþFdisk-out; ð3Þ

where σ0 is the unperturbed surface mass density andΔU is
the Lagrangian potential perturbation. Since we only
consider the vertical displacement, ξ is divergence-free
∇ · ξ ¼ 0, i.e., there are no density perturbations. In the
equilibrium case, U0 satisfies ∇2U0 ¼ 0 except at the disk
plane, where the vertical derivative is discontinuous:

∂U0

∂z

����
þ
−
∂U0

∂z

����
−
¼ 4πσ0: ð4Þ

The right hand side of Eq. (3) can be obtained by
integrating Eq. (2) across the membrane (for details, see
Supplemental Material [32]). It can also be derived directly
from the membrane configuration—as we motivate here—
since it physically represents external forces. The external
force is given by two components of disk forces. The in-
plane component is generated by the pressure variation and
the tilt of the disk plane:

Fdisk-in ¼ −∇kΔPþ ð∇kP · ΔnÞêz; ð5Þ

where n ¼ êz − ∂xξzêx − ∂yξzêy ¼ êz þ Δn is the normal
vector to the disk. The pressure perturbation is related to the
density perturbation through the disk equation of state:
ΔP=P ¼ Γ1Δσ=σ [33], where Γ1 depends on the equation
of state and the nature of the perturbation (e.g., adiabatic or
isothermal). Therefore, the Lagrangian pressure perturba-
tion is zero for vanishing Δσ. The off-plane disk force is
due to the warping of the disk. If we imagine the local disk
surface has a radius of curvature R, then the magnitude of
out-of-plane force is just 2P=R. For general mean curvature
κ, we have

FIG. 1. A self-gravitating membrane separating two spacetime
regions, which are vacuum solutions to Einstein’s equations with
possibly a nonzero cosmological constant. The positive pressure
generally produces an antispring force out of the plane and the
gravitational pull may act as a spring force trying to bring back
the displacement to its equilibrium position. For the analysis
presented in both the Newtonian and relativistic regime, we use a
coordinate transformation to map the membrane to the equatorial
plane of the new coordinates to facilitate the derivation of the
equation of motion.
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Fdisk-out ¼ −Pκn; with κ ¼ ∂
2ξz
∂x2

þ ∂
2ξz
∂y2

: ð6Þ

In order to compute the potential perturbation ΔU, in
particular, its value and derivatives on the disk plane, we
make a coordinate transformation so that z0 ¼ z − ξz, with
x, y coordinates unchanged. The disk is mapped to the
z0 ¼ 0 plane in this new coordinate system, which is more
convenient for solving the boundary value problem. Using

∂

∂x0
¼ ∂

∂x
þ ∂xξz

∂

∂z
;

∂

∂y0
¼ ∂

∂y
þ ∂yξz

∂

∂z
;

∂

∂z0
¼ ∂

∂z
;

ð7Þ

the original Laplace equation ∇2U ¼ 0 (for z ≠ ξz)
becomes

∇02U ¼ 2∂x0ξz
∂
2U

∂x0∂z0
þ 2∂y0ξz

∂
2U

∂y0∂z0
þ ð∂2x0ξz þ ∂

2
y0ξzÞ

∂U
∂z0

ð8Þ

with the matching conditions that ∂z0Ujþ − ∂z0Uj− ¼ 4πσ
andUjþ ¼ Uj−. Because ξ is an infinitesimal displacement,
we can write U as U0 þ U1, with U0 satisfying ∇02U0 ¼ 0
together with ∂z0U0jþ − ∂z0U0j− ¼ 4πσ and U0jþ ¼ U0j−.
The solution of U0 is obviously known, and U1 may be
obtained by solving

∇02U1 ¼ 2∂x0ξz
∂
2U0

∂x0∂z0
þ 2∂y0ξz

∂
2U0

∂y0∂z0
þ ð∂2x0ξz þ ∂

2
y0ξzÞ

∂U0

∂z0
;

ð9Þ

with ∂z0U1jþ − ∂z0U1j− ¼ 0 andU1jþ ¼ U1j−, so thatU1 is
completely regular in the entire spacetime. In particular, U1

evaluated on the disk surface can be mapped back to ΔU
with ΔU ≔ Uðz0Þ −U0ðzÞ ¼ U0ðz0Þ þU1ðz0Þ −U0ðzÞ,
and ∇ΔU is the gravitational backreaction described
in Eq. (3).
At this point, we consider a planar mode with ξ ∝ eik·x in

the eikonal limit, that is, jkj ≫ 1. The right hand side of
Eq. (3) is dominated by Fdisk-out, which is proportional to k2.
On the other hand, as U1 is also proportional to eik·x and
the source term for U1 in Eq. (9) is dominated by the term
proportional to k2, we have U1 ∝ k0, ∇0U1 ∝ k, and
∂z0U1 ∝ k (∂z0 ∝ k as 1=k is the only length scale in the
problem). So the gravitational restoring force is subdomi-
nant compared to the antirestoring force by the warping
disk. The dispersion relation is approximately (with
∂t → −iω)

ω2 ≈ −P=σ0k2; ð10Þ

which leads to exponential mode growth if P=σ0 > 0.

Relativistic case.—In the relativistic setting, we consider
a model problem for compact objects with a membrane: an
infinite membrane with surface mass density σ and surface
pressure P, which is a good approximation for perturba-
tions of (spherical) compact objects in the eikonal limit. We
discuss all the steps of the derivation of the equation of
motion of the membrane perturbations. Detailed manipu-
lations are relegated to Supplemental Material [32].
If we consider the spacetime of a gravastar or a thin-shell

wormhole, the metric can be expressed as diag½−fðrÞ;
1=hðrÞ; r2; r2sin2θ�, with different prescriptions for fðrÞ
and hðrÞ. As we focus on perturbations of small wave-
length, we can look closer at the neighborhood of any point
on the membrane, and rewrite the metric as

ds2 ¼ gð0Þμν dxμdxν

¼ −UðzÞdt2 þUzðzÞdz2 þ UpðzÞðdx2 þ dy2Þ; ð11Þ

where x ¼ θ cosϕ and y ¼ θ sinϕ. This local representa-
tion of the membrane metric is generic. The Israel boundary
conditions on the membrane relate the extrinsic curvature
Kij to the surface-layer property by [34] (dτ ¼ ffiffiffiffi

U
p

dt)

Kx
xjþ− ¼ Ky

yjþ− ¼ 1ffiffiffiffiffiffi
Uz

p U0
p

2Up

����
þ

−
¼ −4πσ;

Kτ
τjþ− ¼ 1ffiffiffiffiffiffi

Uz
p U0

2U

����
þ

−
¼ 8πðPþ σ=2Þ; ð12Þ

where jþ− indicates the difference between 0þ and 0− of the
membrane in the z direction. Since we can always rescale z
in the vertical and radial direction, in the rest of the
discussion we shall set Uz ¼ 1.
Let us now assume the membrane is perturbed with

vertical displacement ξz ¼ ξðx; y; tÞ. The membrane stress
energy tensor is given by

τμν ¼ δðz − ξÞ½ðσ þ PÞuμuν þ Pðgμν − nμnνÞ�; ð13Þ

where n is the normal vector of the membrane. It is given

by ezð1 − hzz=2Þ −
P

α¼t;x;yðξ;α þ hαzÞeα=gð0Þαα and ex is
given by ð∂=∂xÞ (similarly for ey and ez), where hμν is
sourced by the membrane motion [compare with the right
hand side of Eq. (8)]. In order to derive the equation of
motion for ξz, we transform to the coordinate system with
z0 ¼ z − ξ, t0 ¼ t, x0 ¼ x, y0 ¼ y, such that the membrane is
mapped back to the “equatorial” plane in the new
coordinates. The spacetime metric in the new coordinates

can be written as gμν¼gð0Þμν þξμjνþξνjμþhμν¼gð0Þμν þ h̃μν,
where j represents the covariant derivative with respect to

gð0Þμν . The gravitational perturbation is more conveniently
computed in the original ðt; z; x; yÞ coordinate system:
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h̄αμνjα þ 2Rαμβνh̄αβ ¼ 0; ð14Þ

with the trace-reversed h̄μν ≔ hμν − 1
2
hgð0Þμν and assuming

the Lorenz gauge condition h̄jαμα ¼ 0, which is preserved
along the evolution driven by the wave equations if it is
initially satisfied. The waves should be outgoing at infinity
and the matching condition at the membrane leads to

Z þ

−
dzh̄αμνjα ¼ h̄μν;zjþ− ¼ 8πδτμν ð15Þ

with δτxz ¼ P∂xξ=Up, δτyz ¼ P∂yξ=Up, δτtz ¼ σ _ξ=U.
The metric functions are continuous across the mem-
brane, and only ∂zhμν may be discontinuous (we shall
assume a simple setup with reflection symmetry, where
∂zhμνj− þ ∂zhμνjþ ¼ 0, but the final result does not rely on
this assumption). In the eikonal limit, ∂t; ∂x; ∂y; ∂z all
scale as k, which suggests that the boundary value for
h̄μν ¼ OðkÞ0 and ∂h̄μν ¼ OðkÞ. Their interior value should
have similar scaling laws following the wave equation in
Eq. (14). (Such coupled wave equations in Lorenz gauge
can be solved numerically in Schwarzschild spacetime
[35], or perturbatively with the WKB method because the
separation of scales in 1=k and the curvature radius of the
background spacetime ∼U=U0.)
The equation of motion for ξ is given by Tz0ν

;ν ¼ 0. We
integrate it from the lower side to the upper side of the
membrane (z0 ¼ 0− → 0þ), which becomes (evaluated at
z0 ¼ 0)

ðσ þ PÞðuz0uνÞ;ν ¼ Pðnz0nνÞ;ν ð16Þ

or, more explicitly,

σ þ P
2U

ð2h̃tz0;t − h̃tt;z0 Þ ¼ −
P
2U

h̃tt;z0 þ
P

2Up
ðh̃xx;z0 þ h̃yy;z0 Þ

þ Ph̃tz0;t
U

−
Ph̃xz0;x
Up

−
Ph̃yz0;y
Up

:

ð17Þ

By noticing that h̃μν ¼ hμν þ ξμjν þ ξνjμ and hμν;z0 jþþ
hμν;z0 j− ¼ 0, the equation reduces to

σ

U
ξ;ttþ

P
Up

ðξ;xxþξ;yyÞ¼−
σ

U
htz;t−

Phxz;x
Up

−
Phyz;y
Up

: ð18Þ

It is clear that the ξ;xx þ ξ;yy terms here provide the
antispring force that potentially drives the instability.
However, to fully address the mode dispersion relation,
we also need to account for the gravitational backreaction.
The relevant terms in the eikonal limit are described by the
terms on the right-hand side, which all scale as k according

to the discussion under Eq. (15). Therefore, similar to the
Newtonian case, the relativistic antispring force effect
scales as k2 and gravitational backreaction scales as k.
In the eikonal limit, we therefore find

ω2 ≈ −
Uð0ÞP
Upð0Þσ

k2; ð19Þ

which signals an instability if P=σ > 0. This result can be
straightforwardly extended to cases for which the upper and
lower spacetime have different cosmological constants.
Gravastars.—A gravastar can be modeled by a spherical

membrane separating an inner de Sitter spacetime and an
outer Schwarzschild spacetime. If the inner region is an
anti–de Sitter (AdS) spacetime, it is usually called an AdS
bubble [36,37]. Defining ρ as the “energy density” or
cosmological constant in the inner space, a as the radius of
the membrane, σ as the membrane surface energy density,
and P as its pressure, the total mass M of the spacetime is
(following the notation in [38])

M ¼ Mv þMs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Mv

a

r
þM2

s

2a
; ð20Þ

where Ms ¼ 4πa2σ is the thin-shell mass and Mv ¼
4πρa3=3 is the volume energy within the shell. The
pressure within the shell is related to these masses through

P ¼ 1

8πa

�
−

1 − 4Mv=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mv=a

p þ 1 −M=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=a

p
�

¼ 1

8πa

�
3Mv=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mv=a

p −
1 −Mv=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mv=a

p þ 1 −M=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=a

p
�
:

ð21Þ

To ensure meaningful values for P, we require that M=a ≤
1=2 and Mv=a ≤ 1=2. If the gravastar satisfies the weak
energy condition, the surface density σ and Ms are both
positive. We notice thatM ≥ Mv > 0 according to Eq. (20)
[note ð1 − xÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2x
p

is a monotonically increasing for
0 ≤ x ≤ 1=2]. From the second line of Eq. (21), it is
straightforward to see that the pressure is always positive.
Intuitively, it can be viewed as a consequence of the outer
spacetime squeezing the inner spacetime, as the outer
spacetime has larger effective pressure than the inner
spacetime (also with the self-gravitation of the membrane).
Although the analysis in the previous section was with
topology R2 while the membrane of gravastars has top-
ology S2, this distinction is irrelevant as we consider local
perturbations in the eikonal limit. This simple observation,
together with the analysis of the warping mode instabilities,
immediately suggests that gravastars satisfying the weak
energy condition are unstable. The instability timescale is
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determined by Eq. (19) and depends on the prescription for
P and σ.
In the more general setting, as we consider both de Sitter

and AdS interiors and surface density with arbitrary sign,
the warping instability applies part of the parameter space
of gravastars and AdS bubbles, as shown in Fig. 2.
The modal stability of gravastars was initially studied in

[38], which explicitly computed the quasinormal mode
frequency for l ¼ 2 axial and polar perturbations.
However, the analysis in [38] treats the membrane as the
provider of the matching condition between the inner and
outer spacetime, in the same spirit as Eq. (4), but did not
incorporate the membrane oscillations into the coupled
mode equations. An explicit discussion of the gravastar
mode analysis is included in Supplemental Material [32]. It
is indeed the membrane modes that destabilize the whole
system in the eikonal limit.
Thin-shell wormholes.—There are other horizonless

compact objects generally considered in the literature as
BH mimickers, or as candidates sourcing gravitational
wave echoes. For example, thin-shell wormholes are
commonly studied objects with compactness arbitrarily
close to a BH. Consider two Schwarzschild solutions
of the same mass M attached at radius r0 [34,39], the
corresponding thin-shell pressure and density at the worm-
hole throat are

P¼ 1

4πr0

1−M=r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2M=r0

p ; σ¼−
1

2πr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2M=r0

p
ð22Þ

so that the pressure is positive and the density is negative,
which implies that static thin-shell wormholes are free from
the warping instability. On the other hand, the empty shell
models (which have positive surface energy density) as
considered in [40,41] naturally require positive in-shell
pressure to support against gravity, and are all unstable to
warping perturbations in the eikonal limit [42].

Discussion.—We have discovered a generic instability
for thin-layer structures in general relativity, if P=σ > 0,
with applications highlighted in exotic compact objects
with membranes. One may imagine various ways to “cure”
these systems so that they are free from warping insta-
bilities. One possible way is to add additional rigidity
against warping for the membrane, e.g., a new term in the
action with

S ¼ α

Z
d3ξKijKij; ð23Þ

where ξ is the parametrization for the “world tube” of the
membrane, Kij is the extrinsic curvature, and α is a positive
constant characterizing the rigidity. A possible caveat is
that such an additional term in the action may lead to
higher-order derivative terms in the equation of motion,
which may raise concerns regarding well-posedness of the
problem. Moreover, adding dissipation to the system does
not cure the instability. This is because the antispring force
causes runaway behavior of the displacement instead of
oscillations. If the displacement were to saturate at some
value, the dissipation becomes zero as there is zero velocity,
but the antispring force continues to drive the displacement
to larger values, i.e., there is no saturation point. On the
other hand, if we replace the membrane with a shell of
matter of thickness d, this can remove the instability.
The thickness essentially adds a spatial frequency cutoff
k ∼ 1=d in the above analysis. The caveat is that d has to be
sufficiently large so that the antispring in Eq. (10) becomes
subdominant. Note that in this case the description for the
dynamic behavior of matter with anisotropic stress is highly
nontrivial and currently unknown.
A membrane with density and pressure having the same

sign generically prefers configurations with higher surface
curvature as they are associated with a lower energy state,
if gravitational backreaction is neglected. For example,
a membrane with an ellipsoidal shape has lower potential
energy than that with a spherical shape. Mathematically,
the potential energy is ∝ Q2

ij=ð2λÞ where Qij is the mass
quadrupole moment and λ the tidal Love number. Negative
potential energy means that λ is negative. Even with
gravitational backreaction included, if it is weaker
than the antispring force such that the potential energy
is still negative, the Love number λ will also be negative
[43]. Therefore the warping instability is connected
to the negativity of tidal Love numbers, which applies to
generic deformations with any l ≥ 2 [44]. In the eikonal
limit, the tidal Love number λl has to be negative
if P=σ > 0.
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